New species of the pseudoscorpion genus Synsphyronus (Pseudoscorpiones: Garypidae) from Australia

Karen L. Cullen' ${ }^{1}$ and Mark S. Harvey ${ }^{1,2^{*}}$
${ }^{1}$ Collections and Research, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia.
${ }^{2}$ Adjunct: School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.
* Corresponding author: mark.harvey@museum.wa.gov.au

Abstract

The pseudoscorpion genus Synsphyronus is endemic to the Australasian region with 30 species from Australia, two from New Zealand, and one from New Caledonia. Seven new species are described from Australia mostly based on specimens collected on various BushBlitz expeditions: S. codyi sp. nov., S. patricki sp. nov., S. pharangites sp. nov., S. samueli sp. nov. and S. xynus sp. nov. from Western Australia, and S. marinae sp. nov. and S. sertus sp. nov. from the Northern Territory. Like other species of Synsphyronus, all species have reduced trichobothrial numbers on at least one chelal finger, with S. codyi, S. patricki, S. samueli and S. sertus having eight trichobothria on the fixed finger and three on the movable finger (denoted as $8 / 3$), S. marinae has $8 / 2$, S. xynus has $8 / 1$ and S. pharangites has $7 / 1$. Five of the new species (S. codyi, S. marinae, S. pharangites, S. sertus and S. xynus) have fused metatarsi and tarsi, which brings the total number of species with this neotenic feature to 12 of the 40 named species. Certain meristic data for S. gurdoni Harvey, Abrams and Burger, 2015 are corrected. Six of the new species have only been found at a single location, despite concentrated searching for additional specimens in adjacent habitats, and may have very small distributions indicative of short-range endemism. The seventh species, S. xynus, is widely distributed in the Pilbara region of Western Australia. COI barcode data are provided for S. marinae, S. sertus and S. xynus.

KEYWORDS: taxonomy, morphology, short-range endemics, BushBlitz, COI barcode
urn:Isid:zoobank.org:pub:B840F698-0B35-4872-9CF1-D171BB6C

INTRODUCTION

The pseudoscorpion family Garypidae is represented by two subfamilies with dissimilar distributions. Garypinae includes 34 species of Garypus L. Koch, 1873 and three species of Anchigarypus Harvey, 2020, all from supralittoral habitats mostly in tropical and subtropical regions of the world (e.g. Beier 1963; Chamberlin 1921; Harvey 2021; Harvey et al. 2020; Hummelinck 1948; Lee 1979; Mahnert 1982b). Synsphyroninae includes 57 species in nine genera from Africa, Madagascar, the Arabian Peninsula, Australasia and various islands in the Indian Ocean (Harvey 2013). Seven of these genera are restricted to the Afrotropical region where they are generally found in rocky outcrops and desert habitats: Ammogarypus Beier, 1962, Elattogarypus Beier, 1964, Eremogarypus Beier, 1955, Meiogarypus Beier, 1955, Neogarypus Vachon, 1937,

Paragarypus Vachon, 1937 and Thaumastogarypus Beier, 1947 (e.g. Beier 1947; Beier 1955, 1958, 1962, 1964c, 1973; Mahnert 1982b, 1984b, 2007; Vachon 1937a, b). Two others occur outside of Africa. Anagarypus Chamberlin, 1930 has been recorded from northern Australia and several Indian Ocean islands where they occur under rocks or log bark near the seashore (Beier 1981; Chamberlin 1930; Muchmore 1982). The largest synsphyronine genus, Synsphyronus Chamberlin, 1930, is endemic to Australasia where there are currently 33 named species (e.g. Beier 1966b, 1971; Chamberlin 1930, 1943; Harvey 1987b, 2011, 2012, 2020; Harvey et al. 2015a). Most species have been described from Australia, including Tasmania, but two are endemic to New Zealand (Beier 1966b; Chamberlin 1930; Harvey 1987b), and another is endemic to New Caledonia (Harvey 2020). Many additional unnamed
species are also known from Australia that mostly occur under rocks or tree bark in semi-arid and arid ecosystems (Harvey, unpublished data).

One of the most interesting aspects of the morphology of Synsphyronus species is the lability of two features that are relatively well conserved in other pseudoscorpion genera. The first is the fusion of the metatarsus and tarsus in the adults of some species. This feature was used by Chamberlin (1930) to distinguish Synsphyronus from Australia from the morphologically similar Maorigarypus Chamberlin, 1930 from New Zealand which retained the non-fused condition found in other garypids. After discovering two morphologically similar species that had either condition, Chamberlin (1943) synonymized Maorigarypus with Synsphyronus.

The second feature comprises differences in the number of trichobothria on the chelal fingers. While most adult pseudoscorpions have eight trichobothria on the fixed finger and four on the movable finger, there are numerous alternative states (Harvey 1992). For example, all species of the neobisioid family Ideoroncidae have supernumerary trichobothria on both fingers (e.g. Harvey 1992; Harvey 2016; Harvey and Du Preez 2014; Harvey and Muchmore 2013; Mahnert 1981, 1984a) ranging from 17 to 32 in number and all Menthidae have 11 trichobothria on the fixed finger (e.g. Harvey 1992; Harvey and Muchmore 1990). Reductions in trichobothrial number are far more common, occur independently in several different families, and most likely result from neoteny (Sakayori 1989). Examples include the presence of seven trichobothria on the fixed finger of Microbisium Chamberlin, 1930 (family Neobisiidae) (e.g. Beier 1963; Nelson 1984; Sakayori 1989), Microblothrus Mahnert, 1985 (Syarinidae) (Mahnert 1985), Anagarypus Chamberlin, 1930 (Garypidae) (Muchmore 1982), several genera of Garypinidae (Aldabrinus Chamberlin, 1930, Galapagodinus Beier, 1978, Nelsoninus Beier, 1967 and Paraldabrinus Beier, 1966) (Beier 1966a, 1967, 1976, 1978; Mahnert 2014; Muchmore 1974), two species of Geogarypus (Geogarypidae) (Harvey 1986, 1987a), most genera of Cheiridiidae (but occasionally with five or six) (e.g. Beier 1963; Benedict 1978; Harvey 1992; Mahnert 1982a; Vitali-di Castri 1962), Sternophoridae (e.g. Harvey 1985), Canarichelifer Beier, 1965 (Cheliferidae) (Beier 1965), and Anaperochernes Beier, 1964 (Chernetidae) (Beier 1964a, b). Some genera have even fewer fixed finger trichobothria including Paedobisium Beier, 1939 (Neobisiidae) (Beier 1939, 1963; Cîrdei et al. 1967) with six trichobothria, Elattogarypus Beier, 1964 and Meiogarypus Beier, 1955 (Garypidae) (Beier 1955, 1964c; Mahnert 1984b, 2007) and Solinellus Muchmore, 1979 (Garypinidae) with five trichobothria (Muchmore 1979). The reduction in trichobothria on the movable finger is even more prevalent, with many species in various families having three, two or even only one trichobothrium; however, there are too many instances to mention here.

Although the standard trichobothrial pattern in Synsphyronus is $8 / 3$ (i.e. eight trichobothria on the fixed finger and three trichobothria on the movable finger), several other configurations occur, including 8/2, 8/1, 7/2, 7/1 and 6 (or rarely 5)/2 (Harvey 1987b, 2011, 2012, 2020; Harvey et al. 2015a). This lability is unusual for most pseudoscorpion genera and has led to some taxonomic confusion in the past. One of the features cited by Chamberlin (1943) to justify the recognition of the new genus Idiogarypus Chamberlin, 1943 for S. hansenii (With, 1908) from Tasmania was the purported presence of only seven trichobothria on the fixed finger. Morris (1948) demonstrated that specimens of S. hansenii (With, 1908), possessed eight trichobothria on the fixed finger and duly synonymized Idiogarypus with Synsphyronus.

This paper reports the discovery of seven previously undescribed species of Synsphyronus mostly collected from the western half of mainland Australia during several BushBlitz expeditions. BushBlitz is a nature discovery program that seeks to collect and document Australia's biodiversity by organising expeditions to remote locations (see https://bushblitz.org.au/).

MATERIAL AND METHODS

The material utilized in the present study is lodged in the Australian Museum, Sydney (AM), Museum and Art Gallery of the Northern Territory, Darwin (NTM), Queensland Museum, Brisbane (QM) and the Western Australian Museum, Perth (WAM). The specimens were examined by preparing temporary slide mounts by immersing the specimen in 75% lactic acid at room temperature for one to several days, and mounting them on microscope slides with 10 or 12 mm coverslips supported by small sections of nylon fishing line. Specimens were examined with a Leica MZ16 dissecting microscope, a Leica DM2500 or Olympus BH-2 compound microscopes, and illustrated with the aid of a drawing tube. Measurements (in mm) were taken at the highest possible magnification using an ocular graticule. After study the specimens were rinsed in water and returned to 75% ethanol with the dissected portions placed in $12 \times 3 \mathrm{~mm}$ glass genitalia microvials (BioQuip Products, Inc.).

Terminology and mensuration largely follow Chamberlin (1931), with the exception of the nomenclature of the pedipalps, legs and with some minor modifications to the terminology of the trichobothria (Harvey 1992), chelicera (Harvey and Edward 2007; Judson 2007) and faces of the appendages (Harvey et al. 2012).

Molecular sequence data were obtained from three of the nine species of Synsphyronus described here (Table 1). The techniques used to obtain the Cytochrome Oxidase 1 sequence data are outlined in Harvey et al. (2015b) and Harvey et al. (2020).
TABLE 1 Specimens used to generate COI barcodes of three species of Synsphyronus

Species	Registration No.	Sex and type status	Locality	GenBank No.
Synsphyronus marinae sp. nov.	WAM T124420	Female paratype	NT, Wongalara Wildlife Sanctuary, Herbert Bluff	MZ920049
Synsphyronus sertus sp. nov.	WAM T131645	Male paratype	NT, Henbury Station, James Range, c. 7 km WNW. of Mt Keartland	MZ934365
Synsphyronus xynus sp. nov.	WAM T135584	Male holotype	WA, Karijini National Park, c. 20 km SW. of Hancock Gorge	OK489973
	WAM T135549	Female paratype	WA, Karijini National Park, c. 20 km SW. of Hancock Gorge	OK489972
	WAM T82355	Female	WA, Mesa K, 10 km SW. of Pannawonica	OK255296
	WAM T82356	Male	WA, Mesa K, 10 km SW . of Pannawonica	OK255297
	WAM T107400	Female	WA, Hope Downs, 74 km NW. of Newman	OK272544
	WAM T108727	Male	WA, Area C, 27.2 km NE. of Tom Price	OK272545
	WAM T108732	Male	WA, Area C, 27.2 km NE. of Tom Price	OK272546
	WAM T111892	Female	WA, Southern Flank to Jinidi, 68.1 km NW. of Newman	OK489974
	WAM T127500	Deutonymph	WA, BlueSpec, 18 km NE . of Nullagine	OK489975
	WAM T133100	Tritonymph	WA, Sulphur Springs	OK272547
	WAM T133101	Male	WA, Sulphur Springs	OK272548
	WAM T133102	Male	WA, Sulphur Springs	OK489976
	WAM T133103	Female	WA, Sulphur Springs	OK272549
	WAM T133104	Female	WA, Sulphur Springs	OK272550
	WAM T133105	Male	WA, Sulphur Springs	OK272551
	WAM T133106	Male	WA, Sulphur Springs	OK489977
	WAM T133107	Male	WA, Sulphur Springs	OK489978
	WAM T133108	Male	WA, Sulphur Springs	OK489979
	WAM T133109	Female	WA, Sulphur Springs	OK489980
	WAM T133110	Male	WA, Sulphur Springs	OK489981
	WAM T133112	Male	WA, Sulphur Springs mine	OK489982
	WAM T133113	Male	WA, Sulphur Springs mine	OK489983

GenBank No. OK489987 OK489988 OK489989 OK489990 OK489991 OK489992 OK489993 OK272552 OK272553
 MN058679 OK489994 OK272555
 OK489995 OK272557 OK272558 OK272559 OK272560 OK272561 OK272562 OK272563 OK272564 WA, Sulphur Springs mine
WA, Sulphur Springs mine
WA, Sulphur Springs mine
WA, Mesa K, 10 km SW. of Pannawonica
WA, Tom Price Powerline, 1 km WSW. of Tom Price
WA, near Sulphur Springs
WA, near Sulphur Springs
WA, West Turner Syncline, 18 km W. of Tom Price
WA, West Turner Syncline, 18 km W. of Tom Price
WA, West Turner Syncline, 18 km W. of Tom Price
WA, West Turner Syncline, 18 km W. of Tom Price
WA, 64 km NW. of Newman
WA, West Turner Syncline, 28 km W. of Tom Price
WA, West Turner Syncline, 28 km W. of Tom Price
WA, West Turner Syncline, 28 km W. of Tom Price
WA, West Turner Syncline, 28 km W. of Tom Price
WA, West Turner Syncline, 28 km W. of Tom Price
WA, West Turner Syncline, 28 km W. of Tom Price
WAM T133114
WAM T133115
WAM T133116
WAM T133117
WAM T133118
WAM T133119
WAM T133120
WAM T133121
WAM T133122
WAM T133123
WAM T133124
WAM T133125
WAM T133126
WAM T133129
WAM T133130
WAM T133131
WAM T133132
WAM T133133
WAM T133135
WAM T133137
WAM T133138
WAM T133139
WAM T133140
WAM T133142
WAM T133143
WAM T133144
Species

Species	Registration No.	Sex and type status	Locality	GenBank No.
	WAM T133145	Male	WA, 114.4 km NW. of Newman	OK272565
	WAM T133146	Tritonymph	WA, 114.4 km NW. of Newman	OK272566
	WAM T133147	Tritonymph	WA, 114.4 km NW. of Newman	OK272567
	WAM T133154	Male	WA, BlueSpec, 18 km NE. of Nullagine	OK272568
	WAM T133155	Male	WA, BlueSpec, 18 km NE. of Nullagine	OK489996
	WAM T133156	Male	WA, BlueSpec, 18 km NE. of Nullagine	OK489997
	WAM T133157	Protonymph	WA, Nammuldi-Silvergrass, 53.6 km NW. of Tom Price	OK489998
	WAM T133158	Male	WA, 52.4 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK489999
	WAM T133170	Female	WA, Area C, 27.2 km NE. of Tom Price	OK272569
	WAM T133172	Male	WA, Area C, 86.2 km NW. of Newman	OK272570
	WAM T133173	Male	WA, West Turner Syncline, 18 km W. of Tom Price	OK272571
	WAM T133174	Female	WA, West Turner Syncline, 18 km W. of Tom Price	OK272572
	WAM T133175	Female	WA, West Turner Syncline, 18 km W. of Tom Price	OK272573
	WAM T133176	Female	WA, West Turner Syncline, 18 km W. of Tom Price	OK272574
	WAM T133177	Female	WA, West Turner Syncline, 18 km W. of Tom Price	OK490000
	WAM T133178	Male	WA, West Turner Syncline, 31 km WSW. of Tom Price	OK272575
	WAM T133179	Male	WA, West Turner Syncline, 31 km WSW. of Tom Price	OK272576
	WAM T133182	Female	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK490001
	WAM T133183	Female	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272577
	WAM T133184	Deutonymph	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272578
	WAM T133185	Deutonymph	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272579
	WAM T133186	Female	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272580
	WAM T133187	Female	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272581
	WAM T133188	Female	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272582
	WAM T133189	Female	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272583
	WAM T133190	Male	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272584

Species	Registration No.	Sex and type status	Locality	GenBank No.
	WAM T133191	Male	WA, Nammuldi-Silvergrass, 52.1 km NW. of Tom Price	OK272585
	WAM T133192	Female	WA, Nammuldi-Silvergrass, 52.3 km NW. of Tom Price	OK272586
	WAM T133193	Male	WA, Nammuldi-Silvergrass, 52.3 km NW. of Tom Price	OK272587
	WAM T133194	Female	WA, Nammuldi-Silvergrass, 52.3 km NW . of Tom Price	OK490002
	WAM T133408	Female	WA, Nammuldi-Silvergrass, 52.3 km NW. of Tom Price	OK272588
	WAM T133409	Male	WA, Nammuldi-Silvergrass, 52.3 km NW. of Tom Price	OK490003
	WAM T133410	Male	WA, Nammuldi-Silvergrass, 52.3 km NW. of Tom Price	OK272589
	WAM T133411	Male	WA, Nammuldi-Silvergrass, 53.6 km NW. of Tom Price	OK272590
	WAM T133413	Male	WA, Area C, 86.2 km NW. of Newman	OK272591
	WAM T133414	Female	WA, 52.2 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK272592
	WAM T133415	Male	WA, 52.2 km W . of Pannawonica, Mesa G (Warramboo Lease)	OK272593
	WAM T133416	Tritonymph	WA, 52.2 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK272594
	WAM T133418	Female	WA, 52.2 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK272595
	WAM T133419	Female	WA, 52.2 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK255295
	WAM T133420	Female	WA, 52.2 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235424
	WAM T133421	Female	WA, 52.2 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235425
	WAM T133423	Male	WA, 52.4 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235426
	WAM T133424	Male	WA, 52.4 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235427
	WAM T133425	Male	WA, $52.4 \mathrm{~km} \mathrm{W} .\mathrm{of} \mathrm{Pannawonica} ,\mathrm{Mesa} \mathrm{G} \mathrm{(Warramboo} \mathrm{Lease)}$	OK235428
	WAM T133426	Male	WA, 50.7 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235429
	WAM T133429	Protonymph	WA, 50.7 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235430
	WAM T133430	Female	WA, 50.7 km W. of Pannawonica, Mesa G (Warramboo Lease)	OK235431
	WAM T133432	Male	WA, Area C, 22.7 km NE. of Tom Price	OK235432
	WAM T133433	Female	WA, Hope Downs, 74 km NW. of Newman	OK235433

Family Garypidae Simon, 1879

Subfamily Synsphyroninae Beier, 1932

Genus Synsphyronus Chamberlin, 1930
urn:Isid:zoobank.org:act:77B9BB5C-0542-4CD7-BA6BB5FED79DB535

Synsphyronus Chamberlin 1930: 616.
Maorigarypus Chamberlin 1930: 617 (synonymised by Chamberlin 1943: 488).

Idiogarypus Chamberlin 1943: 499 (synonymised by Morris 1948: 37).

TYPE SPECIES

Synsphyronus: Synsphyronus paradoxus Chamberlin, 1930, by original designation.
Maorigarypus: Maorigarypus melanochelatus Chamberlin, 1930, by original designation.

Idiogarypus: Garypus hansenii With, 1908, by original designation.

REMARKS

Harvey et al. (2020) have recently treated a variety of garypid genera, including Synsphyronus, as members of the subfamily Synsphyroninae. The majority of the synsphyronine genera occur in Africa and Madagascar, although Anagarypus Chamberlin, 1930 also occurs in northern Australia and various regions adjacent to the Indian Ocean. Synsphyronus is endemic to Australia, New Zealand and New Caledonia.

Most of the new species described below have only ever been collected at a single location, despite considerable collecting effort during each of the BushBlitz expeditions. Due to their extremely small distributions, usually single outcrops or rock formations, they are short-range endemic species sensu (Harvey 2002) and may require conservation management. We note though that sampling bias may affect this assessment to some degree.

Synsphyronus codyi sp. nov.

Figures 1-10
urn:Isid:zoobank.org:act:F52B978B-787C-4D2D-A5C991DC14406723

MATERIAL EXAMINED

Holotype

Australia: Western Australia: q, Cane River Conservation Park, Cattle Pool, site CR13, $21^{\circ} 59^{\prime} 19.3^{\prime \prime} \mathrm{S}$, $115^{\circ} 34^{\prime} 13.5^{\prime \prime} \mathrm{E}, 24$ June 2011, under bark of Melaleuca argentea, J.M. Waldock (WAM T115044).

Paratypes

Australia: Western Australia: 3 , collected with holotype (WAM T140359, T140360, T140361); 2 tritonymphs, 1 deutonymph, collected with holotype (WAM T140362-T140364).

DIAGNOSIS

Synsphyronus codyi differs from most other species of the genus by the combined presence of fused metatarsi and tarsi (Figure 9), and eight trichobothria on the fixed chelal finger and three trichobothria on the movable finger (Figure 4). The other species of Synsphyronus with this character combination are S. ejuncidus Harvey 1987, from Western Australia and South Australia, S. hadronennus Harvey, 1987 and S. sertus sp. nov. from the Northern Territory, and S. meganennus Harvey, 1987 from New South Wales from which it differs by the broad anterior eye (constricted in S. hadronennus and S. meganennus), st slightly closer to b than to t (much closer to b than t in S. ejuncidus) and the chelal hand (without pedicel) $1.72-1.83 \times(\mathrm{q})$ longer than broad (2.41-2.73 (${ }^{\top}$), 2.09-2.53 (f$) \times$ longer than broad in S. sertus $)$.

DESCRIPTION

Adults

Female only. Colour (Figures 1-3) of sclerotised portions generally yellow-brown; tergites II-X with paired darker patches. Epicuticle waxy. Setae generally aligned perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea unbranched; rallum of 3 blades, the most distal blade with spinules on leading edge, other blades smooth; serrula exterior with 17 blades; lamina exterior present.
Pedipalp (Figure 8): trochanter 1.64, femur 3.67-4.70, patella 2.46-3.00, chela (with pedicel) 3.53-3.70, chela (without pedicel) 3.34-3.51, hand (without pedicel) $1.72-1.83 \times$ longer than broad, movable finger 0.85-0.97 \times longer than hand (without pedicel). Fixed chelal finger with 8 trichobothria, movable chelal finger with 3 trichobothria (Figure 4): eb, esb and isb situated basally in straight row, est submedially, et subdistally, ib and ist basally in diagonal row, and it subdistally, well posterior to et; st situated slightly closer to b than t; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in fixed finger and midway between t and tip of finger in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 5); fixed finger with 37 teeth; movable finger with 31 teeth; accessory teeth absent.

Carapace (Figure 3): $0.91 \times$ longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of rounded corneate eyes (Figure 10) situated c. one-third carapace length from anterior margin; anterior eye broad; with 4 setae near anterior margin and 5 near posterior margin; with numerous lyrifissures; without furrows.

Coxal region: manducatory process rounded, with 3 apical acuminate setae, plus 5 additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: 4: 4: 5: 11.

Legs (Figure 9): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate; femora III and IV much smaller than patellae III and IV; femur + patella of leg IV $3.74 \times$ longer than broad; metatarsi and tarsi fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.

Abdomen: tergites II-X and sternites V-X with median suture line (Figures 1, 2). Tergal chaetotaxy: 4: 4: 6: 6: 6: 8: 6: 6: 6: 4: 2: 2; uniseriate; all setae quadricarinate. Sternal chaetotaxy: 6: (0) 7 (0): (0) 8 (0): 8: 8: 9: 10: 9: 7: 4: 2; uniseriate; all setae quadricarinate except for setae on sternites II-IV and medial setae on sternites V-VI, which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia: with one pair of lateral cribriform plates and 2 pairs of median cribriform plates.

Dimensions: holotype (WAM T115044) followed by 3 other females (when measured): Body length
4.09 (2.98-3.21). Pedipalps: trochanter 0.475/0.290, femur 1.060/0.250 (0.770-1.080/0.210-0.230), patella 0.770/0.285 ($0.590-0.780 / 0.240-0.260$), chela (with pedicel) $1.500 / 0.420$ (1.200-1.500/0.340-0.405), chela (without pedicel) 1.410 (1.160-1.420), hand (without pedicel) length 0.770 ($0.590-0.740$), movable finger length 0.655 ($0.575-0.680$). Carapace $0.930 / 1.02$; eye diameter, anterior 0.050 , posterior 0.075 . Leg IV: femur + patella $0.785 / 0.21$, tibia $0.540 / 0.120$, tarsus 0.360/0.095.

Tritonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.
Pedipalp: trochanter 1.38, femur 4.10, patella 2.40, chela (with pedicel) 3.54, chela (without pedicel) 3.34, hand (without pedicel) $1.77 \times$ longer than broad, and movable finger $0.94 \times$ longer than hand (without pedicel). Fixed chelal finger with 7 trichobothria, movable chelal finger with 2 trichobothria (Figure 6): $e b$, esb, ist and ib situated basally; est situated medially; et distally; it subdistally; b subbasally; t subdistally.
Carapace: $0.82 \times$ longer than broad; with 4 setae near posterior margin.

Legs: much as in adults.
Abdomen: tergal chaetotaxy: 4: 4: 4: 6: 6: 7: 7: 8: 8: 6: 4: 2. Sternal chaetotaxy: 2: (0) 4 (0): (0) 4 (0): 6: 6: 6: 6: 6: 4: 2: 2.
Dimensions: WAM T140362: Body length 2.62 . Pedipalps: trochanter $0.360 / 0.260$, femur $0.800 / 0.195$, patella $0.540 / 0.225$, chela (with pedicel) $1.080 / 0.305$, chela (without pedicel) 1.020, hand (without pedicel) length 0.540 , movable finger length 0.510 . Carapace $0.735 / 0.900$.

FIGURES 1-3 Synsphyronus codyi sp. nov., holotype o (WAM T115044): 1) body, dorsal; 2) body, ventral; 3) cephalothorax, dorsal.

FIGURES 4-10 Synsphyronus codyi sp. nov., holotype $\%$ (WAM T115044), unless stated otherwise: 4) left chela, retrolateral; 5) detail of chelal teeth, retrolateral; 6) left chela, retrolateral, tritonymph paratype (WAM T140362); 7) left chela, retrolateral, deutonymph paratype (WAM T140364); 8) right pedipalp, dorsal; 9) left leg IV, retrolateral; 10) left eyes, dorsal.

Deutonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.55, femur 3.73, patella 2.00, chela (with pedicel) 3.45 , chela (without pedicel) 3.26, hand (without pedicel) $1.65 \times$ longer than broad, and movable finger $0.95 \times$ longer than hand (without pedicel). Fixed chelal finger with 6 trichobothria, movable chelal finger with 2 trichobothria (Figure 7): $e b$, ist and $i b$ situated basally; est situated medially; et distally; it subdistally; b subbasally; t subdistally.

Carapace: $0.82 \times$ longer than broad; with 4 setae near posterior margin.

Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 4: 4: 4: 4: 6: 6: 6: 6: 6: 6: 4: 2. Sternal chaetotaxy: 2: (0) 2 (0): (0) 2 (0): 2: 2: 4: 6 : 6: 4: 2: 2.

Dimensions: WAM T140364: Body length 1.73 . Pedipalps: trochanter $0.295 / 0.190$, femur $0.560 / 0.150$, patella 0.360/0.180, chela (with pedicel) 0.880/0.255, chela (without pedicel) 0.830, hand (without pedicel) length 0.420 , movable finger length 0.400 . Carapace 0.590/0.720.

REMARKS

Synsphyronus codyi has been collected from under bark of the silver cajuput, Melaleuca argentea, in Cane River Conservation Park, in the southwestern Pilbara region of Western Australia. This tree species occurs in northern Australia and most commonly found along river courses or near swamps (Western Australian Herbarium 1998-2021).

ETYMOLOGY

This species is named for the senior authors' son Cody Cullen.

Synsphyronus marinae sp. nov.

Figures 11-22
urn:Isid:zoobank.org:act:837F3243-D7B5-4C4D-990640F387BFD602

MATERIAL EXAMINED

Holotype

Australia: Northern Territory: §̂, Wongalara Wildlife Sanctuary, Herbert Bluff, $14^{\circ} 04^{\prime} 12$ "S, $134^{\circ} 26^{\prime} 29^{\prime \prime} \mathrm{E}, 103 \mathrm{~m}, 28$ May 2012, under sandstone rocks, M.S. Harvey (NTM A005320).

Paratypes

Australia: Northern Territory: 3 §, 3 \&, 1 deutonymph, collected with holotype (NTM A005321A005327); 2 §, 2 ㅇ, collected with holotype (WAM T124416, T124420, T140373-140374).

DIAGNOSIS

Synsphyronus marinae differs from all but one species of the genus by the combined presence of fused metatarsi and tarsi (Figure 21), eight trichobothria on the fixed chelal finger, and two trichobothria on the movable finger (Figure 17). The only other species of Synsphyronus with this character combination is S. heptatrichus Harvey, 1987, from the Northern Territory which it differs by the broad anterior eye (Figure 22) (constricted in S. heptatrichus), the long cylindrical chelal hand (Figure 17) (shorter and basally broadened in S. heptatrichus), and the larger size, e.g. pedipalpal chela (with pedicel) $1.40\left({ }^{\top}\right), 1.60(\%)$ in S. marinae, but 1.10-1.165 (đ), 1.23 (q) in S. heptatrichus.

DESCRIPTION

Adults

Colour (Figures 11-16) of sclerotised portions generally red-brown; tergites IV-X with paired darker patches. Epicuticle waxy. Setae generally aligned perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea unbranched; rallum of 3 blades, the most distal blade with spinules on leading edge, other blades smooth; serrula exterior with 20 (${ }^{\text {º }}$), 21 (() blades; lamina exterior present.

Pedipalp (Figure 20): trochanter 1.23 (${ }^{\text {(})}$), 1.06 (q), femur 4.08-4.55 ($\left.{ }^{\text {T}}\right)$, 3.93-4.33 (q), patella 2.73-3.17 (${ }^{\top}$), 2.70-3.00 (f), chela (with pedicel) 4.35-4.67 (${ }^{\text {T}}$), 4.05-4.11 (q), chela (without pedicel) 4.13-4.40 (${ }^{\text {T}}$), 3.80-3.97 (q), hand (without pedicel) 2.05-2.22 (${ }^{\top}$), 1.96-2.00 (q) \times longer than broad, movable finger 0.97-1.03 ($\left.{ }^{\text {² }}\right), 1.00\left(\right.$ Q $\left.^{(}\right) \times$longer than hand (without pedicel). Fixed chelal finger with 8 trichobothria, movable chelal finger with 2 trichobothria (Figure 17): $e b, e s b$ and $i s b$ situated basally in straight row, est submedially, et subdistally, ib and ist basally in diagonal row, and it subdistally, well posterior to et; st absent; b situated subbasally; t situated subdistally; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in fixed finger and midway between t and tip of finger in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 18); fixed finger with 38 (O^{\top}), 42 (Q) teeth; movable finger with $30\left(\sigma^{\lambda}\right), 32(q)$ teeth; accessory teeth absent.

Carapace (Figures 13, 16): 0.85 (${ }^{\top}$), $0.76(\%) \times$ longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of rounded corneate eyes (Figure 22) situated c. one-third carapace length from anterior margin; anterior eye broad; with 4 setae near anterior margin and 4 near posterior margin; with numerous lyrifissures; without furrows.

FIGURES 11-16 Synsphyronus marinae sp. nov., holotype § (NTM A005320): 11) body, dorsal; 12) body, ventral; 13) cephalothorax, dorsal. Paratype $\&$ (NTM A005324): 14) body, dorsal; 15) body, ventral; 16) cephalothorax, dorsal.

Coxal region: manducatory process rounded, with 3 apical acuminate setae, plus $5\left(\begin{array}{c}1 \\ ,\end{array}\right.$) additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: $\AA^{\lambda}, 2: 2: 3: 3 ; \not, 3: 3: 3: 5$.

Legs (Figure 21): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate; femora III and IV much smaller than patellae III and IV; femur + patella of leg IV $3.43\left(\delta^{\lambda}\right), 3.59($ (f) \times longer than deep; metatarsi and tarsi fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.
Abdomen: tergites II-XI (${ }^{\top}$), III-V (q) and sternites V-X with median suture line, some only partially divided (Figures 11, 12, 14, 15). Tergal chaetotaxy: đ, 4: 4: 4: 4: 4: 5: 4: 4: 4: 4: 2: 2; ㅇ, 4: 5: 5: 4: 5: 6: 6: 6:

6: 4: 2: 2; uniseriate; all setae quadricarinate. Sternal chaetotaxy: ${ }^{\lambda}, 5:(0) 5[2+2](0):(0) 4$ (0): 4: 4: 4: 4: 4: 4: 4: 3; $9,8:(0) 6(0):(0) 6(0): 8: 8: 7: 6: 6: 4: 4: 2$; uniseriate; all setae quadricarinate except for medial setae on sternites II-III (${ }^{\text {® }}$) and setae on sternites II-IV (P), which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia ${ }^{\imath}$: lateral apodeme laterally extended and distally broadened; anterior apodeme acute; a pair of acute dorsal apodemes; lateral rod very broad ventrally and with a blunt, anterior projection; ejaculatory canal atrium large and cup-shaped.

Genitalia : with one pair of lateral cribriform plates and 2 pairs of median cribriform plates.

FIGURES 17-22 Synsphyronus marinae sp. nov., holotype ठ (NTM A005320), unless stated otherwise: 17) left chela, retrolateral; 18) detail of chelal teeth, retrolateral; 19) left chela, retrolateral, deutonymph paratype (NTM A005326); 20) right pedipalp, dorsal; 21) left leg IV, retrolateral; 22) left eyes, dorsal.

Dimensions ô: holotype (NTM A005320) followed by 5 other males (when measured): Body length 3.30 (2.89-3.23). Pedipalps: trochanter 0.450/0.365, femur 1.020/0.235 (0.980-1.040/0.220-0.240), patella $0.710 / 0.240$ ($0.710-0.730 / 0.230-0.240$), chela (with pedicel) 1.400/0.320 (1.370-1.460/0.300-0.320), chela (without pedicel) 1.320 (1.300-1.400), hand (without pedicel) length 0.665 ($0.645-0.710$), movable finger length 0.685 ($0.650-0.690$). Carapace $0.870 / 1.020$; eye diameter, anterior 0.060 , posterior 0.080 . Leg IV: femur + patella $0.685 / 0.200$, tibia $0.450 / 0.110$, tarsus $0.300 / 0.090$.

Dimensions Q : paratype (NTM A005324) followed by 2 other females (when measured): Body length 4.36 (3.76-3.94). Pedipalps: trochanter 0.350/0.330, femur 1.060/0.270 (1.040-1.060/0.240-0.250), patella $0.770 / 0.285$ ($0.750-0.780 / 0.260-0.265$), chela (with pedicel) 1.600/0.395 (1.500-1.520/0.365-0.370), chela (without pedicel) 1.500 (1.45-1.46), hand (without pedicel) length 0.780 ($0.725-0.730$), movable finger length $0.780(0.730)$. Carapace $0.980 / 1.290$; eye diameter, anterior 0.070 , posterior 0.090 . Leg IV: femur + patella $0.790 / 0.220$, tibia $0.505 / 0.130$, tarsus $0.340 / 0.100$.

Deutonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.30, femur 3.78, patella 2.24, chela (with pedicel) 4.07, chela (without pedicel) 3.81, hand (without pedicel) $1.85 \times$ longer than broad, and movable finger $1.11 \times$ longer than hand (without pedicel). Fixed chelal finger with 6 trichobothria, movable chelal finger with 2 trichobothria (Figure 19): $e b$, ist and $i b$ situated basally; est situated medially; et distally; it subdistally; b subbasally; t submedially.

Carapace: $0.77 \times$ longer than broad; with 4 setae near anterior margin and 4 near posterior margin.
Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 4: 4: 4: 4: 4: 4: 6: 6: 6: 6: 2: 2. Sternal chaetotaxy: 0: (0) 2 (0): (0) 2 (0): 2: 2: 4: 5:4: 4: 2: 2.

Dimensions: NTM A005326: Body length 2.52. Pedipalps: trochanter 0.300/0.230, femur 0.680/0.180, patella $0.460 / 0.205$, chela (with pedicel) 1.080/0.265, chela (without pedicel) 1.01, hand (without pedicel) length 0.490 , movable finger length 0.545 . Carapace $0.675 / 0.880$.

MOLECULAR DATA

A single specimen of this species (WAM T124420) was successfully sequenced for COI, and accessioned in GenBank under Accession No. MZ920049 (Table 1).

REMARKS

The specimens of Synsphyronus marinae were collected from under rocks on a sandstone bluff in Wongalara Wildlife Sanctuary, southern Arnhem Land, Northern Territory.

ETYMOLOGY

This species is named for Marina Cheng in appreciation of her companionship during several BushBlitz expeditions and her research on Hemiptera.

Synsphyronus patricki sp. nov.

Figures 23-35
urn:Isid:zoobank.org:act:BC400993-9AED-488B-8D0D85EFE162401B

MATERIAL EXAMINED

Holotype

Australia: Western Australia: ${ }^{\lambda}$, Giralia Bay Station, N. of Centipede Well, $22^{\circ} 35^{\prime} \mathrm{S}, 114^{\circ} 17^{\prime} \mathrm{E}, 29$ June 2006, under limestone rocks, P. Cullen, K.L. Edward (WAM T147102).

Paratype

Australia: Western Australia: 1 , collected with holotype (WAM T76962).

DIAGNOSIS

Synsphyronus patricki resembles many other species of the genus by having separate metatarsi and tarsi (Figure 33), and eight trichobothria on the fixed chelal finger and three trichobothria on the movable finger (Figure 30). The other species of Synsphyronus with

FIGURE 23 Synsphyronus patricki sp. nov., holotype \widehat{o} (WAM T147102).

FIGURES 24-29 Synsphyronus patricki sp. nov., holotype đ (WAM T147102): 24) body, dorsal; 25) body, ventral; 26) cephalothorax, dorsal. Paratype \uparrow (WAM T76962): 27) body, dorsal; 28) body, ventral; 29) cephalothorax, dorsal.
this character combination are S. absitus Harvey, 1987, S. amplissimus Harvey, 1987, S. apimelus Harvey, 1987, S. attiguus Harvey, 1987, S. bounites Harvey, 1987, S. christopherdarwini Harvey, 1987, S. samueli sp. nov., S. dewae Beier, 1969, S. dorothyae Harvey, 1987, S. gigas Beier, 1971, S. gracilis Harvey, 1987, S. gurdoni Harvey, Abrams \& Burger, 2015, S. hansenii With, 1908, S. mimulus Chamberlin, 1943, S. platnicki Harvey, 2020, and S. silveirai Harvey, 1987. Of these species it most closely resembles S. gurdoni from Barrow Island, Western Australia as the rallum of both species has the middle and basal blades highly reduced (Figure 35). It differs from S. gurdoni by the position of trichobothrium st which is noticeably closer to b than to t in S. patricki (Figure 30), but is midway between b and t in S. gurdoni.

DESCRIPTION

Adults

Colour (Figures 24-29) of sclerotised portions generally red-brown; tergites IV-X with paired darker patches. Epicuticle waxy. Setae generally aligned perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea unbranched; rallum of 3 blades, the most distal blade with 2 spinules on leading edge, middle blade with 1 spinule, basal blade smooth, middle and basal blades very short (Figure 35); serrula exterior with 17 (${ }^{\top}$), 19 (() blades; lamina exterior present.

Pedipalp (Figure 32): trochanter 1.25 (${ }^{\text {(1) }}$), 1.31 (P),
 chela (with pedicel) $3.74\left(\mathrm{O}^{\top}\right), 3.43$ (Q), chela (without pedicel) 3.43 (${ }^{\text {® }}$), 3.20 (O), hand (without pedicel) 1.87 $\left(\delta^{\top}\right), 1.71(q) \times$ longer than broad, movable finger 0.85 $\left(\mathrm{O}^{\top}\right), 0.91($ Q $) \times$ longer than hand (without pedicel). Fixed chelal finger with 8 trichobothria, movable chelal finger with 3 trichobothria (Figure 30): eb, esb and
isb situated basally in straight row, est submedially, et subdistally, ib and ist basally in diagonal row, and it subdistally, well posterior to $e t ; b$ situated subbasally; st situated submedially, slightly closer to b than to t; t situated subdistally; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in

FIGURES 30-35 Synsphyronus patricki sp. nov., holotype ô (WAM T147102), unless stated otherwise: 30) left chela, retrolateral; 31) detail of chelal teeth, retrolateral; 32) right pedipalp, dorsal; 33) left leg IV, retrolateral; 34) left eyes, dorsal; 35) left rallum, lateral, paratype + (WAM T76962).
fixed finger and near t in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 31); fixed finger with $40(\widehat{O}, ~+$) teeth; movable finger with $34\left(\delta^{\lambda}, ~\right.$, $)$ teeth; accessory teeth absent.

Carapace (Figures 26, 29): $0.85\left(\mathrm{o}^{\top}\right), 0.89(\%) \times$ longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of large corneate eyes (Figure 34) situated c. one-third carapace length from anterior margin; anterior eye broad; with 5 (δ^{\top}), 4 ($\%$) setae near anterior margin and 4 near posterior margin; with numerous lyrifissures; without furrows.

Coxal region: manducatory process rounded, with 3 apical acuminate setae, plus $5(\widehat{0}, ~$ ㅇ) additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: đ, 2: 2: 2: 4; ㅇ, 2: 2: 3: 4.

Legs (Figure 33): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate; femora III and IV much smaller than patellae III and IV; femur + patella of leg IV 3.67 ($\mathrm{O}^{\text {² }}$), 3.88 (f) \times longer than deep; metatarsi and tarsi fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.

Abdomen: tergites II-X ($\widehat{\AA}, \uparrow$) and sternites IV-X $\left.\mathbf{(O}^{\top}\right), \mathrm{V}-\mathrm{X}(\mathrm{q})$ with median suture line (Figures 24-25, 27-28). Tergal chaetotaxy: $0^{\lambda}, 4: 4: 4: 4: 4: 5: 4: 4: 4$: 4: 2: 2; $甲, 4: 4: 5: 4: 4: 4: 4: 4: 4: 4: 2: 2$; uniseriate; all setae quadricarinate. Sternal chaetotaxy: $\overline{0}, 6:(0)$ $3[4+4](0):(0) 2(0): 4: 2: 3: 2: 5: 4: 4: 2 ; 9,4:(0) 7$ (0): (0) 5 (0): 4: 3: 5: 6: 6: 6: 4: 2; uniseriate; all setae quadricarinate except for setae on sternites II-III, and medial setae on segments V-VI (${ }^{\top}$) and setae on sternites II-IV (早), which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia δ^{λ} : lateral apodeme laterally extended and distally broadened; anterior apodeme acute; a pair of acute dorsal apodemes; lateral rod very broad ventrally and with a blunt, anterior projection; ejaculatory canal atrium large and cup-shaped.

Genitalia Q_{+}: with one pair of lateral cribriform plates and 2 pairs of median cribriform plates.

Dimensions ف̃: holotype (WAM T147102): Body length 2.90. Pedipalps: trochanter 0.390/0.315, femur $0.880 / 0.270$, patella $0.740 / 0.270$, chela (with pedicel) $1.31 / 0.350$, chela (without pedicel) 1.20 , hand (without pedicel) length 0.655 , movable finger length 0.555 . Carapace $0.655 / 0.770$; eye diameter, anterior 0.075 , posterior 0.070. Leg IV: femur + patella 0.660/0.180, tibia 0.460/0.105, metatarsus 0.190/0.075, tarsus 0.175/0.070.

Dimensions : : paratype (WAM T76962): Body length 3.76. Pedipalps: trochanter $0.420 / 0.320$, femur $0.990 / 0.290$, patella $0.825 / 0.300$, chela (with pedicel) $1.440 / 0.420$, chela (without pedicel) 1.345 , hand (without pedicel) length 0.720 , movable finger length 0.655 .

Carapace $0.830 / 0.930$; eye diameter, anterior 0.065 , posterior 0.090. Leg IV: femur + patella $0.795 / 0.205$, tibia $0.520 / 0.115$, metatarsus $0.225 / 0.090$, tarsus 0.210/0.075.

REMARKS

The specimens of Synsphyronus patricki were collected from under limestone rocks near Centipede Well, Carnarvon bioregion, Western Australia. The vegetation at the site is dominated by Triodia sp. with sparse Acacia.

ETYMOLOGY

This species is named in honour of Patrick Cullen, the collector of the type specimens and many other interesting short-range endemics throughout the Pilbara and Carnarvon regions.

Synsphyronus pharangites sp. nov.

Figures 36-46
urn:Isid:zoobank.org:act:FDCAD1DB-6EDB-49CC-A890-60C174EC57E9

MATERIAL EXAMINED

Holotype

Australia: Western Australia: §̧, Cape Range, Shothole Canyon Road, $22^{\circ} 02^{\prime} 43.40^{\prime \prime} \mathrm{S}, 114^{\circ} 01^{\prime} 52.97^{\prime \prime} \mathrm{E}$, 22 June 2019, under bark of Corymbia hamersleyana, M.S. Harvey (WAM T148101).

Paratypes

Australia: Western Australia: 3 q, Cape Range, Shothole Canyon Road, $22^{\circ} 02^{\prime} 43.40^{\prime \prime} \mathrm{S}, 114^{\circ} 01^{\prime} 52.97^{\prime \prime} \mathrm{E}$, 22 June 2019, under bark of Corymbia hamersleyana, M.S. Harvey (WAM T148098-148100).

DIAGNOSIS

Synsphyronus pharangites differs from most other species of the genus by the combined presence of fused metatarsi and tarsi (Figure 45), seven trichobothria on the fixed chelal finger, and one trichobothrium on the movable finger (Figure 42). The only other species of Synsphyronus with this character combination is S. callus Hoff, 1947, from southern Western Australia, which it differs by the straight pedipalpal femur (Figure 44) (slightly procurved in S. callus), the broadened chelal hand (Figure 44) (cylindrical in S. callus), and the position of trichobothria et and it, which are more basally situated than in S. callus (Figure 42).

DESCRIPTION

Adults

Colour (Figures 36-41) of sclerotised portions generally red-brown; tergites II-X with paired darker patches. Epicuticle waxy. Setae generally aligned
perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea of δ and Q unbranched; rallum of 3 blades, the most distal blade with spinules on leading edge, other blades smooth; serrula exterior with 18 blades; lamina exterior present.

Pedipalp (Figure 44): trochanter 1.55 (${ }^{1}$), 1.22-1.29 (P), femur 3.14 (${ }^{\text {§ }}$), 3.42-3.58 ($(+)$, patella 2.56 (${ }^{\text {§ }}$), 2.18-2.48 (O), chela (with pedicel) 3.97 ($\mathrm{O}^{\text {² }}$), 3.47-3.62 (Q), chela (without pedicel) 3.74 ($\mathrm{o}^{\text {² }}$), 3.29-3.36 (Q), hand (without pedicel) $1.97\left(\delta^{\top}\right), 1.67-1.84(q) \times$ longer than broad, moveable finger 0.92 (${ }^{\top}$), $0.80-0.94$ ((t)
\times longer hand (without pedicel). Fixed chelal finger with 7 trichobothria, movable chelal finger with 1 trichobothrium (Figure 42): $e b$ and esb situated basally, isb absent, est submedially, et subdistally, ib and ist basally in diagonal row, and it submedially, well posterior to $e t ; b$ and $s t$ absent; t situated subdistally; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in fixed finger and midway between t and tip of finger in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 43); fixed finger with 33 ($\mathbf{\delta}^{\text {² }}$), 37 (P) teeth; movable finger with 26 (O^{\wedge}), 28 (P) teeth; accessory teeth absent.

FIGURES 36-41 Synsphyronus pharangites, sp. nov., holotype ð (WAM T148101): 36) body, dorsal; 37) body, ventral; 38) cephalothorax, dorsal. Paratype + (WAM T148098): 39) body, dorsal; 40) body, ventral; 41) cephalothorax, dorsal.

FIGURES 42-46 Synsphyronus pharangites sp. nov., holotype đ (WAMT148101): 42) left chela, retrolateral; 43) detail of chelal teeth, retrolateral; 44) right pedipalp, dorsal; 45) left leg IV, retrolateral; 46) left eyes, dorsal.

Carapace (Figures 38, 41): $0.82(\widehat{\delta}, \uparrow$) \times longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of rounded corneate eyes (Figure 46) situated c. one-third carapace length from anterior margin; anterior eye broad; with 4 setae near anterior margin and 6 near posterior margin; with numerous lyrifissures; without furrows.

Coxal region: manducatory process rounded, with 2 apical acuminate setae, plus $6\left(\begin{array}{c} \\ \hline\end{array},+\right.$) additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: $\begin{gathered}\text { §̃, } 3: 4: 5: 5 ; ~\end{gathered}$, 4: 5: 7: 9.

Legs (Figure 45): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate;
femora III and IV much smaller than patellae III and IV; femur + patella of leg IV $3.05\left(\mathrm{O}^{\top}\right), 3.07\left(\right.$ Q $\left._{\text {(}}\right) \times$ longer than deep; metatarsi and tarsi fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.

Abdomen: tergites II-X (O^{\top}), II-VI (q) and sternites V-X with median suture line, some only partially divided (Figures 36, 37, 39, 40). Tergal chaetotaxy: §, 4: 4: 4: 4: 7: 8: 8: 6: 6: 7: 2: 2; $9,4: 5: 5: 7: 9: 6: 6: 10$: 8: 6: 4: 2 ; uniseriate; all setae quadricarinate. Sternal chaetotaxy: $\widehat{\text { T, }} 7:(0) 4$ [2 + 2] (0): (0) 2 (0): 4: 4: 7: 8: 7: 8: 4: 2; ㅇ, 7: (0) 6 (0): (0) 6 (0): 6: 8: 8: 8: 8: 6: 4: 2; uniseriate; all setae quadricarinate except for setae on sternites II-IV and medial setae on sternites V-VIII, which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia \widehat{O}^{λ} : lateral apodeme laterally extended and distally broadened; anterior apodeme acute; a pair of acute dorsal apodemes; lateral rod very broad ventrally and with a blunt, anterior projection; ejaculatory canal atrium large and cup-shaped.

Genitalia ${ }^{+}$: with one pair of lateral cribriform plates and 2 pairs of median cribriform plates

Dimensions đ̄: holotype (WAM T148101): Body length 2.72. Pedipalps: trochanter $0.410 / 0.265$, femur $0.800 / 0.255$, patella $0.615 / 0.240$, chela (with pedicel) $1.210 / 0.305$, chela (without pedicel) 1.140, hand (without pedicel) length 0.600 , movable finger length 0.550 . Carapace 0.720/0.880; eye diameter, anterior 0.055, posterior 0.080. Leg IV: femur + patella 0.580/0.190, tibia $0.360 / 0.105$, tarsus $0.260 / 0.075$.

Dimensions ㅇ: paratype (WAM T148098) followed by 2 other females (when measured): Body length 3.47 (2.94-3.18). Pedipalps: trochanter 0.400/0.320, femur 0.890/0.260 ($0.820-0.860 / 0.230-0.240$), patella 0.645/0.260 ($0.610-0.660 / 0.270-0.280$), chela (with pedicel) 1.300/0.375 (1.340/0.370-0.380), chela (without pedicel) 1.260 (1.220-1.260), hand (without pedicel) length 0.670 ($0.630-0.700$), movable finger length 0.610 ($0.560-0.590$). Carapace $0.760 / 0.930$; eye diameter, anterior 0.055 , posterior 0.075 . Leg IV: femur + patella $0.630 / 0.205$, tibia $0.395 / 0.115$, tarsus $0.315 / 0.085$.

REMARKS

Synsphyronus pharangites has only been collected from a single location in Cape Range National Park, where the specimens were collected from under the bark of Corymbia hamersleyana. Cape Range is situated in the Carnarvon bioregion.

ETYMOLOGY

The species epithet an adjective referring to the species occurrence in Shothole Canyon (pharangites, Greek, of a gully) (Brown 1956).

Synsphyronus samueli sp. nov.

Figures 47-55
urn:Isid:zoobank.org:act:E0A52346-6B67-40BC-874D827B48EE8B1C

MATERIAL EXAMINED

Holotype

Australia: Western Australia: ठ̄, Cane River Conservation Park, site CR20, mesa just below top, $22^{\circ} 14^{\prime} 43.0$ "S, $115^{\circ} 28^{\prime} 49.4^{\prime \prime} \mathrm{E}, 26$ June 2011, under rocks beneath fig tree, J.M. Waldock (WAM T115038).

Paratype

Australia: Western Australia: 1 deutonymph, collected with holotype (WAM T140365).

DIAGNOSIS

Synsphyronus samueli resembles many other species of the genus by having separate metatarsi and tarsi (Figure 54), eight trichobothria on the fixed chelal finger, and three trichobothria on the movable finger (Figure 50). The other species of Synsphyronus with this character combination are S. absitus Harvey, 1987, S. amplissimus Harvey, 1987, S. apimelus Harvey, 1987, S. attiguus Harvey, 1987, S. bounites Harvey, 1987, S. christopherdarwini Harvey, 1987, S. dewae Beier, 1969, S. dorothyae Harvey, 1987, S. gigas Beier, 1971, S. gracilis Harvey, 1987, S. gurdoni Harvey, Abrams \& Burger, 2015, S. hansenii With, 1908, S. mimulus Chamberlin, 1943, S. patricki, sp. nov., S. platnicki Harvey, 2020, and S. silveirai Harvey, 1987. It differs from all of these species by the undulate dorsal and ventral margins of the chelal hand (Figure 50).

DESCRIPTION

Adults

Male only. Colour (Figures 47-49) of sclerotised portions generally red-brown; tergites II-X with paired darker patches. Epicuticle waxy. Setae generally aligned perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea unbranched; rallum of 3 blades, the most distal blade with spinules on leading edge, other blades smooth; serrula exterior with 18 blades; lamina exterior present.
Pedipalp (Figure 53): trochanter 1.25, femur 3.49, patella 2.88, chela (with pedicel) 4.03, chela (without pedicel) 3.73, hand (without pedicel) $2.14 \times$ longer than broad, hand (without pedicel) $1.29 \times$ longer than movable finger. Fixed chelal finger with 8 trichobothria, movable chelal finger with 3 trichobothria (Figure 50): eb, esb and isb situated basally in straight row, est submedially, et subdistally, ib and ist basally in diagonal

FIGURES 47-49 Synsphyronus samueli sp. nov., holotype ô (WAM T115038): 47) body, dorsal; 48) body, ventral; 49) cephalothorax, dorsal.
row, and it subdistally, well posterior to et; st situated slightly closer to b than to t; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in fixed finger and midway between t and tip of finger in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 51); fixed finger with 38 teeth; movable finger with 27 teeth; accessory teeth absent.

Carapace (Figure 49): $0.96 \times$ longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of rounded corneate eyes (Figure 55) situated c. one-third carapace length from anterior margin; anterior eye broad; with 4 setae near anterior margin and 5 near posterior margin; with numerous lyrifissures; without furrows.

Coxal region: manducatory process rounded, with 4 apical acuminate setae, plus 2 additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: 1: 2: 3: 3.

Legs (Figure 54): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate; femora III and IV much smaller than patellae III and IV; femur + patella of leg IV $4.11 \times$ longer than deep; metatarsi and tarsi not fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.
Abdomen: tergites $\mathrm{II}-\mathrm{X}$ and sternites $\mathrm{V}-\mathrm{X}$ with median suture line (Figures 47, 48). Tergal chaetotaxy:〕, 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 2: 2; uniseriate; all setae quadricarinate. Sternal chaetotaxy: $\widehat{3}, 9$: (0) $5[5+5]$ (0): (0) 6 (0): 4: 4: 4: 4: 6: 4: 3: 3; uniseriate; all setae quadricarinate except for setae on sternites II-IV and
medial setae on sternites V-VIII, which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia: lateral apodeme laterally extended and distally broadened; anterior apodeme acute; a pair of acute dorsal apodemes; lateral rod very broad ventrally and with a blunt, anterior projection; ejaculatory canal atrium large and cup-shaped.

Dimensions: holotype (WAM T115038): Body length 3.38. Pedipalps: trochanter $0.420 / 0.335$, femur $0.995 / 0.285$, patella $0.850 / 0.295$, chela (with pedicel) $1.410 / 0.350$, chela (without pedicel) 1.305 , hand (without pedicel) length 0.750 , movable finger length 0.580 . Carapace $0.835 / 0.870$; eye diameter, anterior 0.065 , posterior 0.082 . Leg IV: femur + patella $0.780 / 0.190$, tibia 0.550/0.115, metatarsus $0.229 / 0.097$, tarsus 0.184/0.080.

Deutonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.42, femur 3.2, patella 2.41, chela (with pedicel) 3.69, chela (without pedicel) 3.31, hand (without pedicel) $1.71 \times$ longer than broad, and movable finger $0.949 \times$ longer than hand (without pedicel). Fixed chelal finger with 6 trichobothria, movable chelal finger with 2 trichobothria (Figure 52): $e b, i s t$ and $i b$ situated basally; est situated medially; et distally; it subdistally; b subbasally; t subdistally.

Carapace: $0.85 \times$ longer than broad; with 4 setae near anterior margin and 4 near posterior margin.

FIGURES 50-55 Synsphyronus samueli sp. nov., holotype đ (WAM T115038), unless stated otherwise: 50) left chela, retrolateral; 51) detail of chelal teeth, retrolateral; 52) left chela, retrolateral, deutonymph paratype (WAM T140365); 53) right pedipalp, dorsal; 54) left leg IV, retrolateral; 55) left eyes, dorsal.

Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 2: 2: 2: 2: 4: 4: 4: 4: 4: 4:
2: 2. Sternal chaetotaxy: 0: (0) 2 (0): (0) $2(0): 2: 2: 2: 2$: 2: 2: 2: 2.

Dimensions: WAM T140365: Body length 2.35. Pedipalps: trochanter $0.305 / 0.215$, femur $0.640 / 0.20$, patella $0.555 / 0.23$, chela (with pedicel) 1.07/0.290, chela (without pedicel) 0.96 , hand (without pedicel) length 0.495 , movable finger length 0.470 . Carapace 0.660/0.775.

REMARKS

Synsphyronus samueli has been collected from Cane River Conservation Park, where the specimens were found under rocks beneath a fig tree. The Park is located in the south-western corner of the Pilbara bioregion.

ETYMOLOGY

This species is named for the senior authors' son Sam Cullen.

Synsphyronus sertus sp. nov.

Figures 56-69
urn:Isid:zoobank.org:act:C6165A7F-11FB-4CAC-8CCC524D72CBF2ED

MATERIAL EXAMINED

Holotype

Australia: Northern Territory: đ̂, Henbury Station, James Range, c. 7 km WNW. of Mt Keartland, $24^{\circ} 01^{\prime} 31^{\prime \prime} \mathrm{S}, 133^{\circ} 02^{\prime} 30$ "E, 592 m , 17 May 2013, under shaded sandstone rocks, south-facing gully, M.S. Harvey (NTM A005328).

Paratypes

Australia: Northern Territory: 3 ठ, 5 ㅇ, 6 tritonymphs, 1 deutonymph, 1 protonymph, collected with holotype (NTM A005329-A005344); 2 §, 2 ㅇ, 2 tritonymphs, 1 protonymph, collected with holotype (WAM T131644, T131645, T140375-140379).

DIAGNOSIS

Synsphyronus sertus differs from most other species of the genus by the combined presence of fused metatarsi and tarsi (Figure 68), eight trichobothria on the fixed chelal finger, and three trichobothria on the movable finger (Figure 62). The other species of Synsphyronus with this character combination are S. ejuncidus Harvey, 1987 and S. codyi sp. nov. from Western Australia, S. hadronennus Harvey, 1987 from the Northern Territory, and S. meganennus Harvey, 1987 from New South Wales from which it differs by the broad anterior eye (Figure 69) (constricted in S. hadronennus and S. meganennus), st midway between b and t (Figure 62) (much closer to b than t
in S. ejuncidus) and the chelal hand (without pedicel) 2.41-2.73 ($\left.{ }^{\text {T}}\right), 2.09-2.53$ (() \times longer than broad (1.72-1.83 $\times($ ($)$ longer than broad in S. codyi).

DESCRIPTION

Adults

Colour (Figures 56-61) of sclerotised portions generally red-brown; tergites IV-X with paired darker patches. Epicuticle waxy. Setae generally aligned perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea of δ and q unbranched; rallum of 3 blades, the most distal blade with spinules on leading edge, other blades smooth; serrula exterior with 17 ($\delta^{\text {ºn }}$), 18 (($)$ blades; lamina exterior present.
Pedipalp (Figure 67): trochanter 1.28 ((§), 1.22 (q), femur 3.38-4.80 (${ }^{\top}$), 3.56-4.17 (Q), patella 2.81-3.07 (${ }^{\top}$), 2.84-2.91 (Q), chela (with pedicel) 4.41-5.13 ($\mathrm{O}^{\text {² }}$), 3.93-4.32 (?), chela (without pedicel) 4.11-4.69 (${ }^{\top}$), 3.71-4.03 (P), hand (without pedicel) 2.41-2.73 (${ }^{\top}$), 2.09-2.53 (Q) \times longer than broad, movable finger $0.68-0.74\left({ }^{\text {(}}\right.$) $), 0.80-0.77(\mathrm{C}) \times$ longer than hand (without pedicel). Fixed chelal finger with 8 trichobothria, movable chelal finger with 3 trichobothria (Figure 62): eb, esb and isb situated basally in straight row, est submedially, et subdistally, $i b$ and ist basally in diagonal row, and it subdistally, well posterior to et; st situated midway between b and t; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in fixed finger and midway between t and tip of finger in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 63); fixed finger with $32\left(\mathrm{O}^{\text {² }}\right), 38$ (P) teeth; movable finger with 28 (${ }^{\text {® }}$), 31 (() teeth; accessory teeth absent.
Carapace (Figures 56, 59): $0.91\left(\delta^{\top}\right), 0.90(q) \times$ longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of rounded corneate eyes (Figure 69) situated c. one-third carapace length from anterior margin; anterior eye broad; with 4 setae near anterior margin and 4 near posterior margin; with numerous lyrifissures; without furrows.
Coxal region: manducatory process rounded, with 3 apical acuminate setae, plus $2(\widehat{O}, ~+\odot)$ additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: $\jmath^{\lambda}, 2: 2: 3: 3 ; 9,3: 3: 4: 9$.

Legs (Figure 68): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate; femora III and IV much smaller than patellae III and IV; femur + patella of leg IV $3.58\left(\delta^{\top}\right), 3.80(\mathrm{O}) \times$ longer than deep; metatarsi and tarsi fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.

FIGURES 56-61 Synsphyronus sertus sp. nov., holotype § (NTM A005328): 56) body, dorsal; 57) body, ventral; 58) cephalothorax, dorsal. Paratype + (NTM A005333): 59) body, dorsal; 60) body, ventral; 61) cephalothorax, dorsal.

Abdomen: tergites $\mathrm{II}-\mathrm{X}$ and sternites $\mathrm{V}-\mathrm{X}$ with median suture line (Figures 56-57, 59-60). Tergal chaetotaxy: đ, 2: 2: 2: 4: 4: 4: 4: 5: 6: 6: 4: 2; \uparrow, 5: 4: 4: 4: 4: 6: 6: 6: 6: 4: 4: 2 ; uniseriate; all setae quadricarinate. Sternal chaetotaxy: ${ }^{\text {J }}, 5:(0) 4[2+2](0):(0) 5(0): 5: 4:$ 4: 4: 6: 6: 4: 2; 9 , 8: (0) 5 (0): (0) 7 (0): 8: 8: 8: 8: 6: 6: 2 : 2 ; uniseriate; all setae quadricarinate except for setae on sternites II-IV and medial setae on sternites V-VI, which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia $\widehat{\delta}$: lateral apodeme laterally extended and distally broadened; anterior apodeme acute; a pair of acute dorsal apodemes; lateral rod very broad ventrally and with a blunt, anterior projection; ejaculatory canal atrium large and cup-shaped.

Genitalia P : with one pair of lateral cribriform plates and 2 pairs of median cribriform plates.

Dimensions ${ }^{\top}$: holotype (NTM A005328) followed by 5 other males (when measured): Body length 3.29 (2.96-3.12). Pedipalps: trochanter 0.365/0.285, femur 1.060/0.280 (0.940-1.060/0.250-0.290), patella 0.870/0.280 ($0.760-0.870 / 0.270-0.300$), chela (with pedicel) 1.520/0.315 (1.470-1.540/0.290-0.345), chela (without pedicel) 1.420 (1.360-1.430), hand (without pedicel) length 0.820 ($0.790-0.840$), movable finger length 0.625 ($0.540-0.610$). Carapace $0.860 / 0.950$; eye diameter, anterior 0.065 , posterior 0.090. Leg IV: femur + patella $0.770 / 0.215$, tibia $0.550 / 0.115$, tarsus $0.370 / 0.085$.

Dimensions \circ : paratype (NTM A005333) followed by 5 other females (when measured): Body length 3.73 (3.34-3.68). Pedipalps: trochanter 0.500/0.410,

FIGURES 62-69 Synsphyronus sertus sp. nov., holotype đ (NTM A005324), unless stated otherwise: 62) left chela, retrolateral; 63) detail of chelal teeth, retrolateral; 64) left chela, retrolateral, tritonymph paratype (NTM A005339); 65) left chela, retrolateral, deutonymph paratype (NTM A005343); 66) left chela, retrolateral, protonymph paratype (NTM A005344); 67) right pedipalp, dorsal; 68) left leg IV, retrolateral; 69) left eyes, dorsal.
femur 1.140/0.320 (1.060-1.250/0.290-0.330), patella 0.925/0.320 ($0.910-0.960 / 0.320-0.330$), chela (with pedicel) 1.610/0.410 (1.620-1.740/0.390-0.430), chela (without pedicel) 1.520 (1.510-1.640), hand (without pedicel) length 0.880 ($0.830-0.950$), movable finger length $0.705(0.610-0.720)$. Carapace $0.940 / 1.040$; eye diameter, anterior 0.070 , posterior 0.095 . Leg IV: femur + patella $0.835 / 0.220$, tibia $0.575 / 0.120$, tarsus $0.385 / 0.095$.

Tritonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.21, femur 3.76, patella 2.88, chela (with pedicel) 3.79, chela (without pedicel) 3.52, hand (without pedicel) $2.02 \times$ longer than broad, and movable finger $0.75 \times$ longer than hand (without pedicel). Fixed chelal finger with 7 trichobothria, movable chelal finger with 2 trichobothria (Figure 64): eb, esb, ist and ib situated basally; est situated medially; et distally; it subdistally; b subbasally; t subdistally.

Carapace: $0.93 \times$ longer than broad; with 4 setae near posterior margin.

Legs: much as in adults.
Abdomen: tergal chaetotaxy: 4: 4: 4: 4: 4: 5: 6: 6: 6: 6: 4 :
2. Sternal chaetotaxy: 0: (0) 4 (0): (0) 4 (0): 5: 6: 6: 6: 6: $4:$ 2: 2.

Dimensions: NTM A005339: Body length 3.01. Pedipalps: trochanter 0.370/0.305, femur 0.940/0.250, patella $0.720 / 0.250$, chela (with pedicel) $1.270 / 0.335$, chela (without pedicel) 1.180, hand (without pedicel) length 0.675 , movable finger length 0.505 . Carapace $0.860 / 0.930$.

Deutonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.27, femur 3.18, patella 2.43 chela (with pedicel) 3.90, chela (without pedicel) 3.59, hand (without pedicel) $1.89 \times$ longer than broad, and movable finger $0.91 \times$ longer than hand (without pedicel). Fixed chelal finger with 6 trichobothria, movable chelal finger with 2 trichobothria (Figure 65): $e b$, ist and ib situated basally; est situated medially; et distally; it subdistally; b subbasally; t subdistally.

Carapace: $0.88 \times$ longer than broad; 4 near posterior margin.

Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 2: 4: 4: 2: 4: 4: 4: 6: 6: 4 :
2: 2. Sternal chaetotaxy: 0: (0) 2 (0): (0) 2 (0): 4: 4: 4: 6 : 6: 4: 2: 2.

Dimensions: NTM A005343: Body length 2.32. Pedipalps: trochanter $0.330 / 0.260$, femur $0.700 / 0.220$, patella $0.570 / 0.235$, chela (with pedicel) 1.130/0.290, chela (without pedicel) 1.040, hand (without pedicel) length 0.550 , movable finger length 0.500 . Carapace 0.715/0.810.

Protonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 4 setae on hand and 0 on movable finger; galea unbranched.

Pedipalp: trochanter 1.62, femur 3.33, patella 2.37, chela (with pedicel) 4.15, chela (without pedicel) 3.76, hand (without pedicel) $2.00 \times$ longer than broad, and movable finger $0.88 \times$ longer than hand (without pedicel). Fixed chelal finger with 3 trichobothria, movable chelal finger with 1 trichobothrium (Figure 65): eb and ist situated basally; et situated subdistally; t situated medially.

Carapace: $0.90 \times$ longer than broad.
Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 2: 2: 2: 4: 4: 4: 4: 4: 4: 4 : 4: 2. Sternal chaetotaxy: 0: (0) 2 (0): (0) 2 (0): 2: 2: $2: 2$: 2: 2: 2: 2 .
Dimensions: NTM A005344: Body length 0.945. Pedipalps: trochanter 0.275/0.170, femur 0.500/0.150, patella $0.380 / 0.160$, chela (with pedicel) $0.850 / 0.205$, chela (without pedicel) 0.770, hand (without pedicel) length 0.410 , movable finger length 0.360 . Carapace 0.575/0.640.

MOLECULAR DATA

A single specimen of this species (WAM T131645) was successfully sequenced for COI, and accessioned in GenBank under Accession No. MZ934365 (Table 1).

REMARKS

The specimens of Synsphyronus sertus were found under sandstone rocks in a south-facing gully, with the rocks apparently shaded for much of the year. The collecting site is located in the MacDonnell Ranges bioregion in central Australia.

ETYMOLOGY

This species is named for the fused metatarsi and tarsi (sertus, Latin, join, knit, plait, connect) (Brown 1956).

Synsphyronus xynus sp. nov.

Figures 70-83
urn:Isid:zoobank.org:act:F1561BA0-85AD-44D8-99E63A75A717E1F5

Synsphyronus sp. 'PSE093': Harvey et al. 2020: 37.

MATERIAL EXAMINED

Holotype

Australia: Western Australia: $\widehat{3}$, Karijini National Park, c. 20 km SW. of Hancock Gorge, $22^{\circ} 29^{\prime} 02^{\prime \prime} \mathrm{S}$, $118^{\circ} 08^{\prime} 51^{\prime \prime} \mathrm{E}, 806 \mathrm{~m}, 15$ March 2015, under eucalypt bark, M.S. Harvey et al. (WAM T135584).

Paratype

Australia：Western Australia： 1 Q，collected with holotype（WAM T135549）．

Other material

Australia：Western Australia： 1 §， 5 \＆，Area C West to Yandi， 101.8 km NW．of Newman， $22^{\circ} 38^{\prime} 46^{\prime \prime} \mathrm{S}$ ， $119^{\circ} 06^{\prime} 06^{\prime \prime} \mathrm{E}, 12$ September 2011，under bark，N．Watson （WAM T117770－117775）； $2 \delta^{\lambda}$ ，Area C， 22.7 km NE．of Tom Price， $22^{\circ} 31^{\prime} 48^{\prime \prime} \mathrm{S}, 117^{\circ} 54^{\prime} 46^{\prime \prime} \mathrm{E}, 31$ May 2010，under bark，D．Keirle（WAM T108732，T133432）； 1 §， 2 ㅇ， Area C， 27.2 km NE．of Tom Price， $22^{\circ} 34^{\prime} 48^{\prime \prime} \mathrm{S}$ ， $118^{\circ} 01^{\prime} 05^{\prime \prime} \mathrm{E}, 2$ June 2010，under bark，D．Kamien（WAM T108727，T133170－T133171）； 3 \＆，Area C， 27.5 km NE． of Tom Price， $22^{\circ} 34^{\prime} 48^{\prime \prime} \mathrm{S}, 118^{\circ} 01^{\prime} 17^{\prime \prime} \mathrm{E}, 2$ June 2010， under bark，M．Menz（WAM T108744，T124675）； 1 ㅇ， Area C， 28.4 km NE．of Tom Price， $22^{\circ} 33^{\prime} 54^{\prime \prime} \mathrm{S}$ ， $118^{\circ} 01^{\prime} 22^{\prime \prime} \mathrm{E}, 1$ June 2010，under bark，D．Keirle（WAM T108737）； 3 万，Area C， 61.8 km NW．of Newman， $22^{\circ} 59^{\prime} 56$＂S， $118^{\circ} 52^{\prime} 09$＂E， 25 February 2010，under bark， Z．Hamilton（WAM T101208）； $1 \delta^{\lambda}$ ，Area C， 78.2 km NW．of Newman， $22^{\circ} 55^{\prime} 04^{\prime \prime} \mathrm{S}, 119^{\circ} 08^{\prime} 21^{\prime \prime} \mathrm{E}, 18$ February 2010，under bark，M．Greenham（WAM T101187）； 2 tritonymphs，Area C， 82.7 km NW．of Newman， $23^{\circ} 00^{\prime} 18^{\prime \prime} \mathrm{S}, 119^{\circ} 01^{\prime} 26^{\prime \prime} \mathrm{E}, 21$ February 2010，under bark， M．Greenham（WAM T101202）； 1 ㅇ，Area C， 83.6 km NW．of Newman， $22^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 11^{\circ} 57^{\prime} 32^{\prime \prime} \mathrm{E}, 23$ February 2010，under bark，M．Greenham（WAM T101174）； 2 tritonymphs，Area C， 84.7 km NW．of Newman， $22^{\circ} 54^{\prime} 09$＂S， $119^{\circ} 04^{\prime} 15^{\prime \prime} \mathrm{E}, 17$ February 2010，under bark， Z．Hamilton（WAM T101192，T101201）； 1 §， 3 q，Area C， 84.9 km NW．of Newman， $22^{\circ} 58^{\prime} 54^{\prime \prime} \mathrm{S}, 119^{\circ} 00^{\prime} 49^{\prime \prime} \mathrm{E}$ ， 21 February 2010，under bark，D．Kamien（WAM T101182）； 1 §， 1 ，Area C， 85.2 km NW．of Newman， $23^{\circ} 00^{\prime} 14^{\prime \prime} \mathrm{S}, 118^{\circ} 59^{\prime} 41^{\prime \prime} \mathrm{E}, 22$ February 2010，under bark， T．Sachse（WAM T101204）； $6{ }^{\top}$ ，Area C， 86.2 km NW． of Newman， $23^{\circ} 00^{\prime} 43^{\prime \prime} \mathrm{S}, 118^{\circ} 58^{\prime} 53$＂E， 22 February 2010， under bark，M．Greenham（WAM T101205，T133172， T33413）； $1 \delta^{\lambda}, 1$ q，Area C， 88.3 km NW．of Newman， $22^{\circ} 56^{\prime} 09^{\prime \prime} \mathrm{S}, 19^{\circ} 00^{\prime} 16^{\prime \prime} \mathrm{E}, 20$ February 2010，under bark， M．Greenham（WAM T101181）； $1 〕^{\lambda}$ ，Area C， 89 km NW． of Newman， $22^{\circ} 57^{\prime} 22^{\prime \prime} \mathrm{S}, 118^{\circ} 58^{\prime} 599^{\prime \prime} \mathrm{E}, 23$ February 2010， under bark，M．Greenham（WAM T101186）； 1 \＆Area C， 89.3 km NW．of Newman， $22^{\circ} 54^{\prime} 23^{\prime \prime} \mathrm{S}, 119^{\circ} 00^{\prime} 44^{\prime \prime} \mathrm{E}$ ， 19 February 2010，under bark，M．Greenham（WAM T101177）； 1 §，Area C， 89.4 km NW．of Newman， $22^{\circ} 58^{\prime} 48^{\prime \prime} \mathrm{S}, 118^{\circ} 57^{\prime} 43^{\prime \prime} \mathrm{E}, 23$ February 2010，under bark， D．Kamien（WAM T101203）； 2 \＆，Area C， 89.5 km NW． of Newman， $22^{\circ} 58^{\prime} 48^{\prime \prime} \mathrm{S}, 118^{\circ} 57^{\prime} 43^{\prime \prime} \mathrm{E}, 23$ February 2010， under bark，T．Sachse（WAM T101183）； 2 §，Area C， 89.6 km NW．of Newman， $23^{\circ} 00^{\prime} 03^{\prime \prime} \mathrm{S}, 118^{\circ} 56^{\prime} 49^{\prime \prime} \mathrm{E}, 18$ February 2010，under bark，M．Greenham（WAM T101178）； 1 §， 1 tritonymph，Area C， 90.6 km NW．of Newman， $22^{\circ} 59^{\prime} 52^{\prime \prime}$ S， $119^{\circ} 01^{\prime} 47{ }^{\prime \prime}$ E， 22 February 2010， under bark，M．Greenham（WAM T101184，T101195）； 2 §̄， 2 ，Area C， 93.7 km NW．of Newman， $22^{\circ} 59^{\prime} 55^{\prime \prime} \mathrm{S}$ ， $118^{\circ} 54^{\prime} 24^{\prime \prime}$ E， 18 February 2010，under bark，M． Greenham，Z．Hamilton（WAM T101180，T101198）； 3 §̂， 1 deutonymph，BlueSpec， 18 km NE．of Nullagine， $21^{\circ} 49^{\prime} 51.70^{\prime \prime} \mathrm{S}, 120^{\circ} 16^{\prime} 19.80^{\prime \prime} \mathrm{E}, 1$ August 2012，under
bark of Melaleuca argentea and Corymbia sp．，M．K． Curran，S．R．Bennett（WAM T127500，T133154， T133155，T133156）； $1 \delta^{\lambda}$ ，Cane River Conservation Park， site CR30， $22^{\circ} 15^{\prime} 09.3^{\prime \prime}$ S， $115^{\circ} 30^{\prime} 45.0^{\prime \prime} \mathrm{E}, 28$ June 2011， under bark of Corymbia sp，J．M．Waldock（WAM T115048）； 1 §， 2 \＆，Hillside Station，c． 150 km SE．of Wodgina Mine， $21^{\circ} 54^{\prime} 50.10^{\prime \prime} \mathrm{S}, 119^{\circ} 13^{\prime} 55.90^{\prime \prime} \mathrm{E}, 23$ May－13 June 2014，B．Parsons（WAM T134245）； 2 ㅇ， Hope Downs， 74 km NW．of Newman， $22^{\circ} 59^{\prime} 26^{\prime \prime}$ S， $119^{\circ} 05^{\prime} 28^{\prime \prime} \mathrm{E}, 25$ June 2010，under bark，G．Humphreys， P．Runham（WAM T107400，T133433）； 2 §，Hope Downs 4，c． 100 km NW．of Newman，HD4－3， $23^{\circ} 09^{\prime} 10.7^{\prime \prime} \mathrm{S}, 119^{\circ} 31^{\prime} 44.5^{\prime \prime} \mathrm{E}, 12$ May 2008，J． Francesconi（WAM T91720）； 7 §， 4 ㅇ，Hope Downs 4， c． 100 km NW．of Newman，HD4－6， $23^{\circ} 09^{\prime} 15.7^{\prime \prime} \mathrm{S}$ ， $119^{\circ} 34^{\prime} 54.1^{\prime \prime}$ E， 10 May 2008，J．Francesconi（WAM T91718，T91721）； $1 \delta^{\top}, 1$ Q，same data（AM KS．131088）； 1 §＇， 1 \＆，same data（QM S116491）； 1 ㅇ，Little Sandy Desert， 11.9 km SE．of Burranbar Pool，site LSD－S5－F1， $23^{\circ} 52^{\prime} 48$＂S， $120^{\circ} 30^{\prime} 11^{\prime \prime} \mathrm{E}$ ，August 1997，S．van Leeuwen， B．Bromilow（WAM T110086）； 3 §， 3 ㅇ， 1 tritonymph， Marandoo Mine Expansion， 35 km ENE．of Tom Price， $22^{\circ} 06^{\prime} 20^{\prime \prime}$ S， $118^{\circ} 18^{\prime} 22^{\prime \prime}$ E， 13 April 2007，L．Beesley，P． Runham（WAM T82334，T82335，T155130，T155131）； 1 ＋，Marandoo Mine Expansion， 35 km ENE．of Tom Price， $22^{\circ} 07^{\prime} 37$＂S， $118^{\circ} 19^{\prime} 59^{\prime \prime} \mathrm{E}, 12$ April 2007，L． Beesley（WAM T82336）； 1 ふ ，Marandoo Mine Expansion， 35 km ENE．of Tom Price， $22^{\circ} 39^{\prime} 43^{\prime \prime} \mathrm{S}$ ， $118^{\circ} 10^{\prime} 49^{\prime \prime}$ E， 12 April 2007，L．Beesley（WAM T82340）； 1 §， 1 q， 3 tritonymphs，Mesa G and Warramboo， 50.8 km W．of Pannawonica， $21^{\circ} 40^{\prime} 25^{\prime \prime} \mathrm{S}, 115^{\circ} 50^{\prime} 03^{\prime \prime} \mathrm{E}, 27$ August 2009，under bark，M．A．Cowan（WAM T102897）； $2 \delta^{\lambda}, 8$ O， 1 tritonymph，Mesa K， 10 km SW． of Pannawonica， $21^{\circ} 43^{\prime} 45^{\prime \prime} \mathrm{S}, 116^{\circ} 15^{\prime} 188^{\prime \prime} \mathrm{E}, 13$ November 2006，D．Kamien（WAM T82356，T82355，T133117－ T133125）； 1 §， 2 \＆， 19 km SW．of Mt Brockman，site BRO936， $22^{\circ} 35^{\prime} 377^{\prime \prime} \mathrm{S}, 117^{\circ} 10^{\prime} 23^{\prime \prime} \mathrm{E}, 21-28$ October 2004， R．Teale（WAM T73311）； 4 §̃， 6 \＆， 3 tritonymphs， 1 protonymph，c． 22 km SW ．of Mt Brockman，site BRO36， $22^{\circ} 35^{\prime} 377^{\prime \prime} \mathrm{S}, 117^{\circ} 10^{\prime} 23^{\prime \prime} \mathrm{E}, 27$ October 2004， under bark of Corymbia hamersleyana，R．Teale，Z． Hamilton（WAM T65209）； 2 q， 1 protonymph，Mt Webber，c． 200 km SE．of Port Hedland，2141＇37．90＂S， $119^{\circ} 40^{\prime} 43.10^{\prime \prime} \mathrm{E}, 7-24$ March 2014，dry pitfall，A．Slabber， M．Quinn（WAM T132825）； 1 §，Mudlark， 111 km W．of Newman， $23^{\circ} 04^{\prime} 51^{\prime \prime} \mathrm{S}, 118^{\circ} 41^{\prime} 03^{\prime \prime} \mathrm{E}, 2$ July 2011，under Eucalyptus bark，M．Greenham，N．Watson（WAM T117776）； 10 §， 8 of， 1 tritonymph， 5 deutonymphs， Nammuldi－Silvergrass， 52.1 km NW．of Tom Price， $22^{\circ} 23^{\prime} 01^{\prime \prime} \mathrm{S}, 117^{\circ} 24^{\prime} 23^{\prime \prime} \mathrm{E}, 8-12$ October 2008，under bark，E．Harris，M．Greenham（WAM T99572，T99573， T133182－T133191）； 11 §， 7 ㅇ，Nammuldi－Silvergrass， 52.3 km NW．of Tom Price， $22^{\circ} 23^{\prime} 53^{\prime \prime} \mathrm{S}, 117^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{E}$ ， 8－12 October 2008，under bark，E．Harris，M．Greenham （WAM T99575，T133192－T133195，T133408－T133410）； 5 §， 1 tritonymph， 1 protonymph，Nammuldi－ Silvergrass， 53.6 km NW．of Tom Price， $22^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{S}$ ， $117^{\circ} 22^{\prime} 48^{\prime \prime} \mathrm{E}, 8-12$ October 2008，under bark，E．Harris， M．Greenham（WAM T99574，T133157，T133411， T133412）； 10 ठ $^{\lambda}, 10$ ค， 5 tritonymphs，Nammuldi－

Silvergrass， 79.7 km NW．of Tom Price， $22^{\circ} 14^{\prime} 28^{\prime \prime} \mathrm{S}$ ， $117^{\circ} 10^{\prime} 56^{\prime \prime} \mathrm{E}, 11$ May 2009 ，under bark，M．Greenham， R．Hamilton（WAM T102844）； 1 ㅇ， 2 tritonymphs， 64 km NW．of Newman， $22^{\circ} 54^{\prime} 16{ }^{\prime \prime} \mathrm{S}, 119^{\circ} 20^{\prime} 27^{\prime \prime} \mathrm{E}, 12$ March 2011，under Corymbia hamersleyana bark，Z． Hamilton（WAM T110435，T133137）； 13 ふ， 2 tritonymphs， 2 deutonymphs， 114.4 km NW．of Newman， $22^{\circ} 34^{\prime} 51^{\prime \prime} \mathrm{S}, 119^{\circ} 00^{\prime} 06$＂E， 20 November 2011， under bark，M．Greenham，Z．Hamilton（WAM T126241， T133145－T133147）； 1 O，Orebody 24，c． 7 km N ．of Newman， $23^{\circ} 17^{\prime} 16.32^{\prime \prime} \mathrm{S}, 119^{\circ} 44^{\prime} 48.41^{\prime \prime} \mathrm{E}, 5-13$ August 2013，leaf sifting，S．Callan（WAM T131262）； 13 §， 4 ， 3 tritonymphs， 17.1 km S ．of Pannawonica，Bungaroo Lease， $21^{\circ} 47^{\prime} 04^{\prime \prime} \mathrm{S}, 116^{\circ} 15^{\prime} 31^{\prime \prime} \mathrm{E}, 8$ August 2009，under bark，M．Greenham（WAM T102835）； $12 \delta^{\lambda}, 2$ ㅇ， 5 tritonymphs， 1 protonymph， 50.7 km W ．of Pannawonica，Mesa G－Warramboo Lease， $21^{\circ} 37^{\prime} 01^{\prime \prime} \mathrm{S}$ ， 11549＇59＂E， 27 August 2009，under bark，M．Greenham， M．A．Cowan（WAM T102892，T102893，T133414－ T133421，T133426－T133431）； 8 §， 1 中， 2 tritonymphs， 2 deutonymphs， 52.4 km W．of Pannawonica，Mesa G－ Warramboo Lease， $21^{\circ} 38^{\prime} 09$＂S， $115^{\circ} 49^{\prime} 08^{\prime \prime} \mathrm{E}, 27$ August 2009，under bark，M．A．Cowan（WAM T102890， T133158，T133422－T133425）； 1 tritonymph， 1 deutonymph，c． 150 km SE．of Port Hedland，Shaw River， $21^{\circ} 04^{\prime} 26.99^{\prime \prime} \mathrm{S}, 119^{\circ} 14^{\prime} 53.22^{\prime \prime} \mathrm{E}, 23-29$ July 2011， leaf litter，N．Dight，M．Majer（WAM T117733， T117746）； 1 §， 1 tritonymph，Robe Valley， 15 km SW．of Pannawonica， $21^{\circ} 43^{\prime} 59^{\prime \prime} \mathrm{S}, 116^{\circ} 13^{\prime} 10^{\prime \prime} \mathrm{E}, 26$ October 2010， under bark，D．Kamien J．Cairnes（WAM T109110， T109111）； 3 §， 1 tritonymph，Robe Valley， 16 km SW．of Pannawonica， $21^{\circ} 44^{\prime} 46^{\prime \prime} \mathrm{S}, 116^{\circ} 13^{\prime} 12$＂E， 26 October 2010， under bark，J．Cairnes（WAM T109113）； 1 §， 2 ค， 1 tritonymph，Robe Valley， 39.6 km WSW．of Pannawonica， $21^{\circ} 43^{\prime} 51^{\prime \prime} \mathrm{S}, 115^{\circ} 57^{\prime} 13^{\prime \prime} \mathrm{E}, 25$ October 2010， under bark，D．Kamien（WAM T109109）； 1 §， 6 q， 5 km S．of Shay Gap， $20^{\circ} 32^{\prime} \mathrm{S}, 120^{\circ} 10^{\prime} \mathrm{E}, 5$ October 1992， under bark of bloodwood，G．Harold（WAM T127289）； 1 ㅇ，South Flank，c． 95 km NW．of Newman， $22^{\circ} 58^{\prime} 15.0^{\prime \prime} \mathrm{S}$ ， 118047＇33．7＂E，16－23 March 2016，under bark，B． Durrant（WAM T140230）； 1 q，Southern Flank to Jinidi， 68.1 km NW．of Newman， $22^{\circ} 57^{\prime} 48^{\prime \prime} \mathrm{S}, 119^{\circ} 12^{\prime} 58^{\prime \prime} \mathrm{E}, 15$ April 2011，under bark，R．Teale，M．Greenham（WAM T111892）； $13 \jmath^{\lambda}, 1$ of， 5 tritonymphs， 2 deutonymphs， Sulphur Springs， $21^{\circ} 08^{\prime} 27^{\prime \prime}$ S， $119^{\circ} 11^{\prime} 20^{\prime \prime} \mathrm{E}, 4$ September 2006，under bark of Corymbia hamersleyana，R．Teale， P．Runham，M．Greenham（WAM T63976，T63968， T133100－T133105）； 4 §， 3 \＆， 1 deutonymph，Sulphur Springs， $21^{\circ} 08^{\prime} 10^{\prime \prime} \mathrm{S}, 119^{\circ} 12^{\prime} 06^{\prime \prime} \mathrm{E}, 4$ September 2006， under bark of Corymbia hamersleyana，R．Teale，P． Runham，M．Greenham（WAM T63974）； 6 đ， 2 ค， 2 tritonymphs，Sulphur Springs， $21^{\circ} 09^{\prime} 06^{\prime \prime} \mathrm{S}, 119^{\circ} 12^{\prime} 10^{\prime \prime} \mathrm{E}$ ， 4 September 2006，under bark of Corymbia hamersleyana，R．Teale，P．Runham，M．Greenham （WAM T63965，T63978）； 8 §， 5 ㅇ，Sulphur Springs mine， $21^{\circ} 08^{\prime} 52^{\prime \prime} \mathrm{S}, 119^{\circ} 12^{\prime} 14^{\prime \prime} \mathrm{E}, 2$ September 2006，under bark of Corymbia hamersleyana，R．Teale，P．Runham， M．Greenham（WAM T63988，T133112－133116）； 1 §， 2 q， 2 tritonymphs， 1 deutonymph，Sulphur Springs， $21^{\circ} 08^{\prime} 16^{\prime \prime} \mathrm{S}, 119^{\circ} 12^{\prime} 200^{\prime \prime} \mathrm{E}, 4$ September 2006，under bark
of Corymbia hamersleyana，R．Teale，P．Runham，M． Greenham（WAM T63975）； 2 §̂，Sulphur Springs， $20^{\circ} 59^{\prime} 03^{\prime \prime} \mathrm{S}, 119^{\circ} 18^{\prime} 14^{\prime \prime} \mathrm{E}, 3$ September 2006，under bark of Corymbia hamersleyana，R．Teale，P．Runham，M． Greenham（WAM T63967）； 3 §， 2 \＆，near Sulphur Springs， $20^{\circ} 46^{\prime} 01^{\prime \prime} \mathrm{S}, 119^{\circ} 19^{\prime} 17^{\prime \prime} \mathrm{E}, 28$ October 2007， under bark of Corymbia hamersleyana，M．S．Harvey， R．J．Teale（WAM T95086，T133129，T133130）； 7 §， 4 中， Sulphur Springs， $20^{\circ} 46^{\prime} 10^{\prime \prime}$ S， $119^{\circ} 1^{\prime} 17^{\prime \prime} E, 3$ September 2006，under bark of Corymbia hamersleyana，R．Teale， P．Runham，M．Greenham（WAM T63979，T133106－ T133111）； 4 ，Tom Price Powerline， 1 km WSW．of Tom Price， $22^{\circ} 42^{\prime} 06$＂S， $117^{\circ} 46^{\prime} 28^{\prime \prime} \mathrm{E}, 8$ August 2009，under bark，M．Menz（WAM T98406，T133126）； 1 §， 3 \＆Tom Price Powerline， 10 km NW．of Tom Price， $22^{\circ} 38^{\prime} 50$＂S， $117^{\circ} 42^{\prime} 32^{\prime \prime}$ E， 8 August 2009，under bark，M．Menz （WAM T98408，T153910）； 1 §， 1 \＆， 1 deutonymph， 1 protonymph，Tom Price Powerline， 6 km NW．of Tom Price， $22^{\circ} 40^{\prime} 255^{\prime \prime} \mathrm{S}, 117^{\circ} 44^{\prime} 11^{\prime \prime} \mathrm{E}, 7$ September 2008，under bark，M．Menz（WAM T98404，T98407，T133127， T133128）； 3 §， 9 O， 3 tritonymphs，Tom Price Powerlines， 4.1 km WNW．of Tom Price， $22^{\circ} 41^{\prime} 10 " \mathrm{~S}$ ， $117^{\circ} 44^{\prime} 55^{\prime \prime}$ E， $1-30$ September 2007，under bark，D． Kamien（WAM T102920，T133159－T133163）； 3 §＇， 1 tritonymph，Tom Price Powerlines， 6.1 km NW．of Tom Price， $22^{\circ} 39^{\prime} 477^{\prime \prime} \mathrm{S}, 117^{\circ} 43^{\prime} 11^{\prime \prime} \mathrm{E}, 1-31$ September 2007， under bark，E．Harris（WAM T102916，T102917， T155164）； 3 §， 1 \＆，Tom Price Powerlines， 6.4 km NW． of Tom Price， $22^{\circ} 39^{\prime} 45^{\prime \prime} \mathrm{S}, 117^{\circ} 43^{\prime} 48^{\prime \prime} \mathrm{E}, 1-31$ September 2007，under bark，D．Kamien（WAM T102918，T102919）； 1 tritonymph，West Turner Corridor， 23 km W．of Tom Price， $22^{\circ} 42^{\prime} 22$＂S， $117^{\circ} 34^{\prime} 18^{\prime \prime}$ E，1－31 September 2007， under bark，M．Greenham（WAM T102925）； 4 §， 9 ค， 4 tritonymphs，West Turner Corridor， 23 km W．of Tom Price， $22^{\circ} 43^{\prime} 04^{\prime \prime}$ S， $117^{\circ} 34^{\prime} 30^{\prime \prime}$ E， $1-30$ September 2007， under bark，M．Greenham（WAM T102921，T133164－ T133169）； 5 §， 1 ㅇ，West Turner Corridor， 23 km W．of Tom Price， $22^{\circ} 43^{\prime} 17^{\prime \prime}$ S， $117^{\circ} 40^{\prime} 33$＂E， $1-31$ September 2007，under bark，M．Greenham（WAM T10292， T102926）； 4 §， 2 \＆， 1 tritonymph，West Turner Syncline， 35 km SW．of Tom Price， $22^{\circ} 40^{\prime} 13^{\prime \prime} \mathrm{S}, 117^{\circ} 27^{\prime} 17^{\prime \prime} \mathrm{E}, 18$ July 2007，under bark，D．Kamien，M．Greenham（WAM T98420，T98421）； 1 protonymph，West Turner Syncline， 24 km W．of Tom Price， $22^{\circ} 40^{\prime} 19$＂S， $117^{\circ} 28^{\prime} 01$＂E， 24 July 2008，under Eucalyptus bark，D．Kamien（WAM T98417）； 3 §， 1 \＆， 1 deutonymph，West Turner Syncline， 33 km W．of Tom Price， $22^{\circ} 40^{\prime} 19$＂S， $117^{\circ} 28^{\prime} 01^{\prime \prime} \mathrm{E}, 24$ July 2008，under Eucalyptus bark，D．Kamien（WAM T98415）； 2 §， 5 tritonymphs，West Turner Syncline， 31 km WSW．of Tom Price， $22^{\circ} 44^{\prime} 12$＂S， $17^{\circ} 30^{\prime} 09^{\prime \prime} \mathrm{E}, 20$ July 2007，under bark，D．Kamien，M．Greenham（WAM T98411，T133179，T133180）； 9 §， 7 中， 2 tritonymphs， West Turner Syncline， 28 km W．of Tom Price， $22^{\circ} 39^{\prime} 57^{\prime \prime} \mathrm{S}, 117^{\circ} 31^{\prime} 22^{\prime \prime} \mathrm{E}$ ， 21 July 2007，under bark，D． Kamien，M．Greenham（WAM T98410，T98422， T133138－T133144）； 12 §ै， 12 q， 1 tritonymph， 1 deutonymph，West Turner Syncline， 22 km W．of Tom Price， $22^{\circ} 43^{\prime} 00^{\prime \prime}$ S， $117^{\circ} 34^{\prime} 32^{\prime \prime} \mathrm{E}, 25$ July 2008，under Corymbia bark，E．Harris（WAM T98413）； 8 §， 12 ㅇ， West Turner Syncline， 18 km W．of Tom Price，
$22^{\circ} 40^{\prime} 37$ "S, $117^{\circ} 35^{\prime} 53^{\prime \prime} \mathrm{E}$, 22 July 2007, under bark, D. Kamien, M. Greenham (WAM T98412, 133173T133177); 9 ठ, 10 \& 2 tritonymphs, West Turner Syncline, 18 km W. of Tom Price, $22^{\circ} 40^{\prime} 12{ }^{\prime \prime} \mathrm{S}$, $117^{\circ} 36^{\prime} 48^{\prime \prime}$ E, 22 July 2007, under bark, D. Kamien, M. Greenham (WAM T98409); 3 §, 3 ㅇ, West Turner Syncline, 18 km W. of Tom Price, $22^{\circ} 40^{\prime} 12{ }^{\prime \prime} \mathrm{S}$, $117^{\circ} 36^{\prime} 48^{\prime \prime} \mathrm{E}, 22$ July 2007, under bark, D. Kamien, M. Greenham (WAM T133131-T133136); 6 §̉, 1 ㅇ, 3 tritonymphs, Wheatstone Biological Survey, 23 km SSE. of Onslow, $21^{\circ} 51^{\prime} 12.11^{\prime \prime} \mathrm{S}, 115^{\circ} 08^{\prime} 51.30^{\prime \prime} \mathrm{E}, 22$ April 2009, Corymbia sp., G. Humphreys, M. Greenham (WAM T98750); $5 \AA^{\lambda}$, Wheatstone Biological Survey, 62 km SE. of Onslow, $22^{\circ} 04^{\prime} 55.73^{\prime \prime} \mathrm{S}, 115^{\circ} 28^{\prime} 58.83$ " $\mathrm{E}, 20$ April 2009, G. Humphreys, M. Greenham (WAM T98747).

DIAGNOSIS

Synsphyronus xynus differs from all other species of the genus by the combined presence of fused metatarsi and tarsi (Figure 82), a constricted anterior eye (Figure 83), eight trichobothria on the fixed chelal finger, and one trichobothrium on the movable finger (Figure 76).

DESCRIPTION

Adults

Colour (Figures 70-75) of sclerotised portions generally dark red-brown; tergites IV-X with paired darker patches. Waxy epicuticle. Setae generally aligned perpendicularly from body, each seta quadricarinate. Most cuticular surfaces roughened, but not granulate.

Chelicera: with 5 setae on hand and 1 subdistal seta on movable finger, all setae acuminate; setae $s b s$ and $b s$ shorter than others; 2 dorsal lyrifissures and 1 ventral lyrifissure; galea of δ and q unbranched; rallum of 3 blades, the most distal blade with spinules on leading edge, other blades smooth; serrula exterior with 16 (${ }^{\lambda}$, (q) blades; lamina exterior present.

Pedipalp (Figure 81): trochanter 1.37 (§), 1.64 (Q), femur 3.27-4.38 (§), 3.74-4.32 (Q), patella 2.22-2.71 (${ }^{\top}$), 2.47-2.74 (P), chela (with pedicel) 3.28-3.85 (O^{\top}), 3.33-3.79 (單), chela (without pedicel) 2.96-3.65 (${ }^{\top}$), 3.13-3.56 (Q), hand (without pedicel) 1.53-1.85 ($\mathbf{o}^{\text {}}$), 1.61-1.94 (P) \times longer than broad, movable finger 0.88-1.02 (('), , 0.86-0.97 (O) \times longer than hand (without pedicel). Fixed chelal finger with 8 trichobothria, movable chelal finger with 1 trichobothrium (Figure 76): $e b, e s b$ and isb situated basally in straight row, est submedially, et subdistally, ib and ist basally in diagonal row, and it subdistally, well posterior to et; t subdistally; patch of microsetae present on retrolateral margin of fixed chelal finger near et. Venom apparatus present in both chelal fingers, venom ducts long, terminating in nodus ramosus midway near et in fixed finger and midway between t and tip of finger in movable finger. Chelal teeth retrorse and acute distally, becoming rounded basally (Figure 77); fixed finger with $37\left(\mathrm{C}^{\top}\right), 35(\mathrm{P})$ teeth; movable finger with $27\left({ }^{\top}\right), 26(\%)$ teeth; accessory teeth absent.

Carapace (Figures 72, 75): 0.82-0.90 (${ }^{\text {² }}$), 0.79-0.92 $($ O) \times longer than broad; anterior margin slightly indented medially; subtriangular; with 2 pairs of corneate eyes (Figure 83) situated c. one-third carapace length from anterior margin; anterior eye strongly constricted; with 4 setae near anterior margin and $8\left(8^{\prime}\right)$ 9 (q) near posterior margin; with numerous lyrifissures; without furrows.

Coxal region: manducatory process rounded, with 3 apical acuminate setae, plus $4\left(\begin{array}{c} \\ \hline\end{array}, \underline{q}\right)$ additional setae; medial maxillary lyrifissure situated submedially; chaetotaxy of coxae I-IV: ${ }^{\text {T, }}, 3: 4: 5: 6 ; \%, 4: 5: 6: 12$.
Legs (Figure 82): junction between femora and patellae I and II slightly oblique to long axis; junction between femora and patellae III and IV very angulate; femora III and IV much smaller than patellae III and IV; femur + patella of leg IV $3.00\left({ }^{\text {ºn }}\right), 3.29(q) \times$ longer than deep; metatarsi and tarsi fused and without tactile seta; subterminal tarsal setae arcuate and acute; arolium much longer than claws, not divided.
Abdomen: tergites II-X ($\widehat{\lambda}, \uparrow$) and sternites X (${ }^{\wedge}$), IX-X (q) with median suture line (Figures 70, 71, 73, 74). Tergal chaetotaxy: $\widehat{\jmath}, 4: 8: 10: 10: 11: 11: 12: 10:$ 10: 8: 4: 2; ㅇ, 10: 9: 10: 13: 14: 14: 13: 11: 7: 8: 4: 2 ; uniseriate; all setae quadricarinate. Sternal chaetotaxy: ${ }^{\top}, 6:(0) 4[2+3](0):(0) 4(0): 4: 6: 7: 9: 8: 9: 8: 2$; 8: (0) 6 (0): (0) $6(0): 6: 8: 9: 11: 11: 10: 4: 2$; uniseriate; all setae quadricarinate except for setae on sternites II-IV and medial setae on sternites V-VI, which are acuminate. Spiracles without helix. Anal plates (tergite XII and sternite XII) situated within sternite XI, surrounded by slightly raised rim. Pleural membrane wrinkled-plicate; without any setae.

Genitalia ${ }^{1}$: lateral apodeme laterally extended and distally broadened; anterior apodeme acute; a pair of acute dorsal apodemes; lateral rod very broad ventrally and with a blunt, anterior projection; ejaculatory canal atrium large and cup-shaped.

Genitalia \bigcirc : with one pair of lateral cribriform plates and 2 pairs of median cribriform plates.
Dimensions ${ }^{\top}$: holotype (WAM T135584) followed by 10 other males (when measured): Body length 2.50 (2.14-2.69). Pedipalps: trochanter 0.335/0.245, femur 0.735/0.180 (0.690-0.770/0.160-0.230), patella $0.540 / 0.205$ ($0.490-0.570 / 0.185-0.245$), chela (with pedicel) $1.045 / 0.300$ (1.030-1.245/0.270-0.370), chela (without pedicel) 0.990 ($0.980-1.095$), hand (without pedicel) length 0.520 ($0.490-0.565$), movable finger length 0.460 ($0.475-0.525$). Carapace $0.690 / 0.765$ ($0.670-0.765 / 0.780-0.885$); eye diameter, anterior 0.035 , posterior 0.055 . Leg IV: femur + patella $0.540 / 0.180$, tibia 0.340/0.135, tarsus 0.265/0.075.

Dimensions : paratype (WAM T135549) followed by 10 other females (when measured): Body length 3.12 (2.36-3.23). Pedipalps: trochanter 0.385/0.235, femur $0.830 / 0.205(0.750-0.815 / 0.185-0.215)$, patella $0.610 / 0.225$ ($0.545-0.625 / 0.210-0.235$), chela (with pedicel) $1.195 / 0.315$ (1.150-1.200/0.320-0.360), chela

FIGURES 70-75 Synsphyronus xynus sp. nov., holotype ठิ (WAM T135584): 70) body, dorsal; 71) body, ventral; 72) cephalothorax, dorsal. Paratype \& (WAM T135549): 73) body, dorsal; 74) body, ventral; 75) cephalothorax, dorsal.
(without pedicel) 1.120 (1.090-1.125), hand (without pedicel) length 0.610 ($0.545-0.610$), movable finger length 0.505 ($0.510-0.555$). Carapace $0.770 / 0.975$ ($0.710-0.760 / 0.800-0.940$); eye diameter, anterior 0.030 , posterior 0.055 . Leg IV: femur + patella $0.625 / 0.190$, tibia $0.390 / 0.110$, tarsus $0.300 / 0.085$.

Tritonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.53, femur 3.84, patella 2.49, chela (with pedicel) 3.73, chela (without pedicel) 3.54, hand (without pedicel) $1.81 \times$ longer than broad, and movable finger $0.93 \times$ longer than hand (without pedicel). Fixed chelal finger with 7 trichobothria,
movable chelal finger with 1 trichobothrium (Figure 78): $e b, e s b$, ist and $i b$ situated basally; est situated medially; et subdistally; it submedially; t submedially.

Carapace: $0.83 \times$ longer than broad; with 6 setae near posterior margin.

Legs: much as in adults.
Abdomen: tergal chaetotaxy: 8: 8: 8: 10: 10: 10: 11: 8: 9: 4: 4: 4. Sternal chaetotaxy: 0: (0) 4 (0): (0) 4 (0): 4: 4: 4: 6: 10: 8: 2: 2.

Dimensions: WAM T155164: Body length 1.73. Pedipalps: trochanter 0.290/0.190, femur 0.595/0.155, patella $0.435 / 0.175$, chela (with pedicel) $0.895 / 0.0 .240$, chela (without pedicel) 0.850, hand (without pedicel) length 0.435 , movable finger length 0.405 . Carapace 0.575/0.690.

FIGURES 76-83 Synsphyronus xynus sp. nov., holotype ठ (WAM T135584), unless stated otherwise: 76) left chela, retrolateral; 77) detail of chelal teeth, retrolateral; 78) left chela, retrolateral, tritonymph (WAMT155164); 79) left chela, retrolateral, deutonymph (WAM T133157); 80) left chela, retrolateral, protonymph (WAM T98417); 81) right pedipalp, dorsal; 82) left leg IV, retrolateral; 83) left eyes, dorsal.

Deutonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 5 setae on hand and 1 on movable finger; galea unbranched.

Pedipalp: trochanter 1.44, femur 3.44, patella 2.13, chela (with pedicel) 3.64, chela (without pedicel) 3.44, hand (without pedicel) $1.72 \times$ longer than broad, and movable finger $1.00 \times$ longer than hand (without pedicel). Fixed chelal finger with 6 trichobothria, movable chelal finger with 1 trichobothrium (Figure 79): eb, ist and $i b$ situated basally; est situated medially; et distally; it subdistally; t submedially.

Carapace: $0.86 \times$ longer than broad; with 28 setae including 2 near anterior margin and 4 near posterior margin.

Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 3: 6: 6: 6: 6: 6: 6: 6:7: 6:
2: 2. Sternal chaetotaxy: 0: (0) $2(0):(0) 2(0): 2: 2: 2: 3$: 6: 6: 4: 2 .

Dimensions: WAM T133157: Body length 1.51. Pedipalps: trochanter $0.230 / 0.160$, femur $0.465 / 0.135$, patella $0.330 / 0.155$, chela (with pedicel) $0.710 / 0.195$, chela (without pedicel) 0.670, hand (without pedicel) length 0.335 , movable finger length 0.335 . Carapace $0.510 / 0.590$.

Protonymph

Colour mostly as for adults, but generally paler.
Chelicera: with 4 setae on hand and 0 on movable finger; galea unbranched.

Pedipalp: trochanter 1.50, femur 3.22, patella 2.08, chela (with pedicel) 3.66, chela (without pedicel) 3.41, hand (without pedicel) $1.75 \times$ longer than broad, and movable finger $0.98 \times$ longer than hand (without pedicel). Fixed chelal finger with 3 trichobothria, movable chelal finger with 1 trichobothrium (Figure 80): $e b$ and ist situated basally; et situated subdistally; t situated submedially.

Carapace: $0.86 \times$ longer than broad.
Legs: metatarsi and tarsi fused.
Abdomen: tergal chaetotaxy: 2: 4: 4: 4: 4: 4: 4: 4: 4: 4 :
2: 2. Sternal chaetotaxy: 0: (0) 2 (0): (0) $2(0): 2: 2: 2: 2$: 2: 2: 4: 2.
Dimensions: WAM T98417: Body length 1.38 . Pedipalps: trochanter $0.180 / 0.120$, femur $0.370 / 0.115$, patella $0.270 / 0.130$, chela (with pedicel) $0.585 / 0.160$, chela (without pedicel) 0.545, hand (without pedicel) length 0.280 , movable finger length 0.275 . Carapace 0.425/0.495.

MOLECULAR DATA

We successfully sequenced 98 specimens of this species for COI, which have been accessioned in GenBank (Table 1). Sequence data from a single specimen of this species were reported by Harvey et al. (2020) under the name Synsphyronus 'PSE093'.

REMARKS

Synsphyronus xynus has features that suggest a close relationship with the S. paradoxus group of species, including fused metatarsi and tarsi (Figure 82), a broad chelal hand (Figure 81) and a strongly constricted anterior eye (Figure 83). This group currently includes species with differing numbers of trichobothria: S. paradoxus from south-eastern Australia with 8/2, S. hadronennus from the Northern Territory and S. meganennus from New South Wales with $8 / 3$, and S. heptatrichus from the Northern Territory with $7 / 2$. The new species differs from them by having an $8 / 1$ arrangement (Figure 76).

Synsphyronus xynus occurs throughout the Pilbara region of Western Australia where it occurs under tree bark, including tree species such as Corymbia hamersleyana, Melaleuca argentea and unidentified species of Eucalyptus. This corticolous habitat is similar to other species of the paradoxus group, which are all found under tree bark (Harvey 1987b).

ETYMOLOGY

This species is named for its widespread distribution in the Pilbara region of Western Australia (xynus, common) (Brown 1956).

Synsphyronus gurdoni Harvey, Abrams \& Burger, 2015

Synsphyronus gurdoni Harvey, Abrams and Burger 2015: 138-142, figures 1-13.

REMARKS

The description of S. gurdoni by Harvey et al. (2015a) contained incorrect ratios for some pedipalpal segments. The corrected ratios are presented here:
Femur 2.44-3.42 (${ }^{\text {§ }}$), 2.90-3.60 (O), patella 2.12-2.62 (${ }^{\top}$), 2.32-2.76 (O), chela (with pedicel) 3.12-3.80 ($\mathrm{O}^{\text {² }}$), 3.25-3.53 (只), chela (without pedicel) 3.15-3.42 (δ^{\top}), 2.97-3.30 $($ ($) \times$ longer than broad.

ACKNOWLEDGEMENTS

This project was funded by a Bush Blitz 2020-21 Taxonomy Research Project, and supported by a Net Conservation Benefits grant administered by the Western Australian Department of Biodiversity, Conservation and Attractions. We are very grateful to Joel Huey and Mia Hillyer for supplying the COI sequences.

REFERENCES

Beier, M. (1939). Die Pseudoscorpioniden-Fauna der iberischen Halbinsel. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 72: 157202.

Beier, M. (1947). Zur Kenntnis der Pseudoscorpionidenfauna des südlichen Afrika, insbesondere der südwest- und südafrikanischen Trockengebiete. Eos, Madrid 23: 285-339.

Beier, M. (1955). Pseudoscorpionidea. In: B. Hanstrom, P. Brinck and G. Rudebeck, South African animal life. Results of the Lund Expedition in 1950-1951 1: 263-328. (Almquist and Wiksell: Stockholm).
Beier, M. (1958). The Pseudoscorpionidea (false-scorpions) of Natal and Zululand. Annals of the Natal Museum 14: 155-187.
Beier, M. (1962). Pseudoscorpioniden aus der Namib-Wüste. Annals of the Transvaal Museum 24: 223-230.
Beier, M. (1963). Ordnung Pseudoscorpionidea (Afterskorpione). In: Bestimmungsbücher zur Bodenfauna Europas 1: vi, 313 pp. (Akademie-Verlag: Berlin).
Beier, M. (1964a). Die Pseudoscorpioniden-Fauna Chiles. Annalen des Naturhistorischen Museums in Wien 67: 307-375.
Beier, M. (1964b). Pseudoscorpione von der Insel San Ambrosio. Annalen des Naturhistorischen Museums in Wien 67: 303-306.
Beier, M. (1964c). Weiteres zur Kenntnis der Pseudoscorpioniden-Fauna des südlichen Afrika. Annals of the Natal Museum 16: 30-90.
Beier, M. (1965). Über Pseudoskorpione von den Kanaren. Annalen des Naturhistorischen Museums in Wien 68: 375-381.
Beier, M. (1966a). Ergebnisse der österreichischen Neukaledonien-Expedition 1965. Pseudoscorpionidea. Annalen des Naturhistorischen Museums in Wien 69: 363-371.
Beier, M. (1966b). On the Pseudoscorpionidea of Australia. Australian Journal of Zoology 14: 275-303.
Beier, M. (1967). Contributions to the knowledge of the Pseudoscorpionidea from New Zealand. Records of the Dominion Museum 5: 277-303.
Beier, M. (1971). A new Synsphyronus Chamberlin (Pseudoscorpiones) from the Great Victoria Desert. Journal of the Australian Entomological Society 10: 161-162.
Beier, M. (1973). Weiteres zur Kenntnis der Pseudoscorpioniden Südwestafrikas. Cimbebasia, A 2: 97-101.
Beier, M. (1976). The pseudoscorpions of New Zealand, Norfolk and Lord Howe. New Zealand Journal of Zoology 3: 199-246.
Beier, M. (1978). Pseudoskorpione von den Galapagos-Inseln. Annalen des Naturhistorischen Museums in Wien 81: 533-547.
Beier, M. (1981). Eine Pseudoscorpioniden-Ausbeute von den Andaman-Inseln. Bollettino del Museo Civico di Storia Naturale, Verona 7: 293-295.
Benedict, E.M. (1978). False scorpions of the genus Apocheiridium Chamberlin from western North America (Pseudoscorpionida, Cheiridiidae). Journal of Arachnology 5: 231-241.
Brown, R.W. (1956). Composition of scientific words. 882 pp . (Smithsonian Institution Press: Washington, D.C.).
Chamberlin, J.C. (1921). Notes on the genus Garypus in North America (Pseudoscorpionida-Cheliferidae). Canadian Entomologist 53: 186-191.
Chamberlin, J.C. (1930). A synoptic classification of the false scorpions or chela-spinners, with a report on a cosmopolitan collection of the same. Part II. The Diplosphyronida (Arachnida-Chelonethida). Annals and Magazine of Natural History 5(10): 1-48, 585-620.

Chamberlin, J.C. (1931). The arachnid order Chelonethida. Stanford University Publications, Biological Sciences 7(1): 1-284.
Chamberlin, J.C. (1943). The taxonomy of the false scorpion genus Synsphyronus with remarks of the sporadic loss of stability in generally constant morphological characters (Arachnida: Chelonethida). Annals of the Entomological Society of America 36: 486-500.
Cîrdei, F., Bulimar, F. and Malcoci, E. (1967). Contribuţii la studiul pseudoscorpionidelor (ord. Pseudoscorpionidea) din Moldova (Masivul Repedea). Anale Stiintifice, Universitatii 'Alexandru Ioan Cuza' (Series Noua) (2) Biologie 13: 237-242.
Harvey, M.S. (1985). The systematics of the family Sternophoridae (Pseudoscorpionida). Journal of Arachnology 13: 141-209.
Harvey, M.S. (1986). The Australian Geogarypidae, new status, with a review of the generic classification (Arachnida: Pseudoscorpionida). Australian Journal of Zoology 34: 753-778.
Harvey, M.S. (1987a). Redescriptions of Geogarypus bucculentus Beier and G. pustulatus Beier (Geogarypidae: Pseudoscorpionida). Bulletin of the British Arachnological Society 7: 137-141.
Harvey, M.S. (1987b). A revision of the genus Synsphyronus Chamberlin (Garypidae: Pseudoscorpionida: Arachnida). Australian Journal of Zoology, Supplementary Series 126: 1-99.
Harvey, M.S. (1992). The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Taxonomy 6: 1373-1435.
Harvey, M.S. (2002). Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16(4): 555-570. doi: 10.1071/IS02009
Harvey, M.S. (2010). Two new species of Synsphyronus (Pseudoscorpiones: Garypidae) from southern Western Australian granite landforms. Records of the Western Australian Museum 26: 11-22. doi: 10.18195/issn.0312-3162.26(1).2010.011-022

Harvey, M.S. (2012). A new species of Synsphyronus (Pseudoscorpiones: Garypidae) from Western Australia. Records of the Western Australian Museum 27: 55-61. doi: 10.18195/issn.0312-3162.27(1).2012.055-061
Harvey, M.S. (2013). Pseudoscorpions of the World, version 3.0. Western Australian Museum, Perth. [Accessed on 18 March 2020] https://museum.wa.gov.au/catalogues-beta/ pseudoscorpions
Harvey, M.S. (2016). The systematics of the pseudoscorpion family Ideoroncidae (Pseudoscorpiones, Neobisioidea) in the Asian region. Journal of Arachnology 44: 272-329. doi: 10.1636/JoA-S-16-041.1
Harvey, M.S. (2020). Synsphyronus platnicki sp. nov.: first Synsphyronus (Pseudoscorpiones: Garypidae) from New Caledonia. Arachnology 18: 468-472.
Harvey, M.S. (2021). A new species of Garypus (Pseudoscorpiones: Garypidae) from southern Thailand. Revue Suisse de Zoologie 128: 221-225. doi: 10.35929/ RSZ. 0047
Harvey, M.S., Abrams, K.M. and Burger, M.A.A. (2015a). A new species of the pseudoscorpion genus Synsphyronus (Pseudoscorpiones: Garypidae) from Barrow Island, Western Australia. Records of the Western Australian

Museum 30(2): 137-143. doi: 10.18195/issn.0312-3162.30(2).2015.137-143

Harvey, M.S. and Du Preez, G. (2014). A new troglobitic ideoroncid pseudoscorpion (Pseudoscorpiones: Ideoroncidae) from southern Africa. Journal of Arachnology 42(1): 106-110. doi: 10.1636/K13-55.1
Harvey, M.S. and Edward, K.L. (2007). A review of the pseudoscorpion genus Ideoblothrus (Pseudoscorpiones, Syarinidae) from western and northern Australia. Journal of Natural History 41: 445-472. doi: 10.1080/ 00222930701219123
Harvey, M.S., Hillyer, M.J., Carvajal, J.I. and Huey, J.A. (2020). Supralittoral pseudoscorpions of the genus Garypus (Pseudoscorpiones: Garypidae) from the Indo-West Pacific region, with a review of the subfamily classification of Garypidae. Invertebrate Systematics 34(1): 34-87. doi: 10.1071/IS19029
Harvey, M.S., Lopes, P.C., Goldsmith, G.R., Halajian, A., Hillyer, M.J. and Huey, J.A. (2015b). A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones: Cheliferidae) in southern Africa. Invertebrate Systematics 29(5): 444-456. doi: 10.1071/ IS15027
Harvey, M.S. and Muchmore, W.B. (1990). The systematics of the family Menthidae (Pseudoscorpionida). Invertebrate Taxonomy 3: 941-964.
Harvey, M.S. and Muchmore, W.B. (2013). The systematics of the pseudoscorpion family Ideoroncidae (Pseudoscorpiones: Neobisioidea) in the New World. Journal of Arachnology 41: 229-290. doi: 10.1636/K13-42.1
Harvey, M.S., Ratnaweera, P.B., Udagama, P.V. and Wijesinghe, M.R. (2012). A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes. Journal of Natural History 46: 2519-2535. doi: 10.1080/00222933.2012.707251
Hummelinck, P.W. (1948). Studies on the fauna of Curaçao, Aruba, Bonaire and the Venezuelan Islands: no. 13. Pseudoscorpions of the genera Garypus, Pseudochthonius, Tyrannochthonius and Pachychitra. Natuurwetenschappelijke Studiekring voor Suriname en Curaçao 5: 29-77.
Judson, M.L.I. (2007). A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae). Zootaxa 1627: 53-68. doi: 10.11646/zootaxa.1627.1.4
Lee, V.F. (1979). The maritime pseudoscorpions of Baja California, México (Arachnida: Pseudoscorpionida). Occasional Papers of the California Academy of Sciences 131: i-iv, 1-38.
Mahnert, V. (1981). Die Pseudoskorpione (Arachnida) Kenyas. I. Neobisidae und Ideoroncidae. Revue Suisse de Zoologie 88: 535-559.

Mahnert, V. (1982a). Die Pseudoskorpione (Arachnida) Kenyas II. Feaellidae; Cheiridiidae. Revue Suisse de Zoologie 89: 115-134.
Mahnert, V. (1982b). Die Pseudoskorpione (Arachnida) Kenyas, IV. Garypidae. Annales Historico-Naturales Musei Nationalis Hungarici 74: 307-329.
Mahnert, V. (1984a). Beitrag zu einer besseren Kenntnis der Ideoroncidae (Arachnida: Pseudoscorpiones), mit Beschreibung von sechs neuen Arten. Revue Suisse de Zoologie 91: 651-686.
Mahnert, V. (1984b). Forschungen an der Somalilandküste. Am Strand und auf den Dünen bei Sar Uanle. 36. Pseudoscorpiones (Arachnida). Monitore Zoologico Italiano, n.s., Supplemento 19: 43-66.
Mahnert, V. (1985). Weitere Pseudoskorpione (Arachnida) aus dem zentralen Amazonasgebiet (Brasilien). Amazoniana 9: 215-241.
Mahnert, V. (2007). Pseudoscorpions (Arachnida: Pseudoscorpiones) of the Socotra Archipelago, Yemen. Fauna of Arabia 23: 271-307.
Mahnert, V. (2014). Pseudoscorpions (Arachnida: Pseudoscorpiones) from the Galapagos Islands (Ecuador). Revue Suisse de Zoologie 121: 135-210.
Morris, J.C.H. (1948). The taxonomic position of Idiogarypus hansenii (With). Papers and Proceedings of the Royal Society of Tasmania 1947: 37-41.
Muchmore, W.B. (1974). Pseudoscorpions from Florida. 1. The genus Aldabrinus (Pseudoscorpionida: Olpiidae). Florida Entomologist 57: 1-7.
Muchmore, W.B. (1979). Pseudoscorpions from Florida and the Caribbean area. 7. Floridian diplosphyronids. Florida Entomologist 62: 193-213.
Muchmore, W.B. (1982). The genus Anagarypus (Pseudoscorpionida: Garypidae). Pacific Insects 24: 159163.

Nelson, S.O., Jr (1984). The genus Microbisium in North and Central America (Pseudoscorpionida, Neobisiidae). Journal of Arachnology 12: 341-350.
Sakayori, H. (1989). Postembryonic development of a neotenic pseudoscorpion, Microbisium pygmaeum (Ellingsen, 1907). Acta Arachnologica 38: 55-62.
Vachon, M. (1937a). Pseudoscorpions nouveaux des collections du Muséum National d'Histoire Naturelle de Paris (Première note). Bulletin du Muséum National d'Histoire Naturelle, Paris (2) 9: 129-133.
Vachon, M. (1937b). Pseudoscorpions nouveaux des collections du Muséum National d'Histoire Naturelle de Paris. (3 ${ }^{\text {e }}$ note). Bulletin de la Société Entomologique de France 42: 188-190.
Vitali-di Castri, V. (1962). La familia Cheiridiidae (Pseudoscorpionida) en Chile. Investigaciones Zoológicas Chilenas 8: 119-142.
Western Australian Herbarium (1998-2021). FloraBase-the Western Australian Flora. [Accessed on 4 June 2021] https://florabase.dpaw.wa.gov.au/

MANUSCRIPT RECEIVED 28 JUNE 2021; ACCEPTED 16 NOVEMBER 2021.

