A new species of *Uperoleia* (Anura: Myobatrachidae) from the northwest Kimberley, Western Australia

PAUL DOUGHTY1,3 & J. DALE ROBERTS2

1Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool WA 6106, Australia. E-mail: paul.doughty@museum.wa.gov.au

2School of Animal Science, University of Western Australia, Crawley WA 6009, Australia. E-mail: droberts@cyllene.uwa.edu.au

3Corresponding author

Abstract

*Uperoleia* is a large genus of small-bodied terrestrial frogs that occur in Australia and southern New Guinea. With nine species, the Kimberley region in northern Western Australia is the most diverse. Recent surveys of the northwest coast of the Kimberley have revealed a tenth species of *Uperoleia*. The new species is characterized by a combination of small body size, dark and slightly tubercular dorsal skin, basal webbing between the toes, outer metatarsal tubercle spatulate and oriented perpendicular to the foot, possession of maxillary teeth, a broadly exposed frontoparietal fontanelle and the advertisement call is a high-pitched rasp. All specimens collected have been associated with sandstone boulders or escarpments with flowing water or rock pools. The northwest Kimberley is an isolated region of high rainfall and rugged terrain that possesses high biodiversity for many plant and animal groups and is therefore worthy of special conservation attention.

Key words: frog, *Uperoleia*, call analysis

Introduction

The Myobatrachidae is a diverse family of small-bodied frogs from Australia and southern New Guinea (Littlejohn et al. 1993; Tyler & Doughty (in press). Within the Myobatrachidae, the genus *Uperoleia* Gray, 1841 is the most speciose with 25 currently recognized species. *Uperoleia* species are small (2-4 cm), squat and short-limbed frogs that are typically drably coloured and terrestrial. They have moderately developed parotoid, dorsolateral/inguinal and coccygeal glands which may be marked with orange or gold. There is usually a red or orange femoral and tibial patch that may function as ‘flash’ colouration when the legs are extended. Advertisement calls are simple, consisting of rasps or clicks.

Until the revision of *Uperoleia* by Tyler et al. (1981a), confusion surrounded the distribution of the type species (*U. marmorata* Gray, 1841), the status of *Glauertia* and the number of species. Tyler et al. (1981a) restricted the distribution of *U. marmorata* to the vague collection location of the holotype, synonymized *Glauertia* with *Uperoleia* and described nine new species (one of which, *U. variegata* Tyler, Davies & Martin, 1981, was later synonymized by Tyler et al. 1986). Tyler et al. (1981b,c) described two more species and Davies and colleagues (Davies et al. 1985; Davies & Littlejohn 1986; Davies et al. 1986; Davies et al. 1993) described eight more species. Recently, Young et al. (2005) described a small-bodied *Uperoleia* from just outside the Darwin metropolitan area, underscoring the potential for further unrecognized diversity within the genus.

and *U. rugosa* Andersson, 1916 in arid Queensland, New South Wales and South Australia. The region with the highest diversity of species is the Kimberley in northern Western Australia. The Kimberley is a diverse and rugged landscape that is isolated to the south by deserts and to the east by the geographic constriction of the Cambridge Gulf. This region receives reliable and heavy tropical rainfall in the summer (December–March). The southwestern Kimberley has three endemic species: *U. aspera* Tyler, Davies & Martin, 1981, *U. mjobergii* Andersson, 1913 and *U. talpa* Tyler, Davies & Martin, 1981. To the east are *U. borealis* Tyler, Davies & Martin, 1981, *U. lithomoda* Tyler, Davies & Martin, 1981, and *U. trachyderma*, all three of which extend into the Northern Territory and *U. lithomoda* extends to Queensland and southern New Guinea. In the northwest Kimberley, *U. borealis*, *U. crassa* Tyler, Davies & Martin, 1981, *U. lithomoda*, *U. marmorata* and *U. minima* Tyler, Davies & Martin, 1981 occur.

Surveys specifically targeting frogs were conducted during summer wet seasons from 2005–2008 in the Kimberley (Fig. 1). In January 2007, we went to the Prince Regent River area to look for *U. marmorata* and new species of frogs. During the survey, the new species was recognized as such because its call differed from congeners. In February 2008, more individuals were heard and collected on Katers Island in the far north Kimberley. We describe the new taxon here based on its distinctive appearance and call.

**Methods**

**Morphology**

We examined and measured all nine available specimens of the new taxon in the Western Australian Museum (WAM). All the specimens were male, except for one female and one metamorph of indeterminate sex. We measured the following characters: snout-urostyle length (SUL), head depth (HD – from top of head to jaw at level of the eyes), eye-naris distance (EN – from anterior corner of eye to posterior margin of naris), interorbital distance (IO – from anterior corners), internarial distance (IN – from medial margins of nares), eye length (EyeL), arm length (ArmL – from elbow to tip of 3rd finger), tibia length (TL) and foot + tarsus length (FTL – from knee to tip of 4th toe). Morphological characters of the head are limited in *Uperoleia* owing to extensive glands covering the tympana. One specimen (WAM R168040) was dissected to determine the extent of the frontoparietal fontanelle.

**FIGURE 1.** Distribution of *Uperoleia micra* sp. nov. and *U. minima* in the northwest Kimberley, Western Australia.
Call recording and analysis

We obtained high quality recordings of four males for analysis. Digital recordings were made using Marantz PMD 660 digital recorders with either Beyer M88 or AKG D880M microphones. Calls were analysed using Raven Pro 1.3. We measured duration for various call components to the nearest ms. Frequency was analysed using a Hann window, 1024 samples and we selected the peak frequency from a spectrum display averaged 10 times over an entire call.

Frogs called in discrete bouts and we measured calls per bout and call rate (from the first to the last call in the longest complete bout). For all other variables, we measured three consecutive calls from the middle of a bout and averaged values from all three calls for a single frog. For each call we measured duration, pulse number, pulse rate (averaged over whole call) and peak frequency also averaged over the whole call. We have reported a whole call average for ease of comparison. Temperature was measured as air temperature at the calling site.

In one of the four recordings, high background noises and/or reverberation obscured pulse structure as the male was calling in a rock crevice sitting just above flowing water so pulse rate and pulse number were not measured. In one other recording, the male called intermittently and we could not define a bout structure so there were no call rate data.

Taxonomy

_Uperoleia_ Gray, 1841

_Type species:_ U. marmorata, by monotypy.

**Diagnosis.** A group of small-bodied (to 4 cm) terrestrial frogs with short limbs, no webbing on fingers, first finger shorter than second, inner metatarsal tubercle not compressed, lacking vomerine teeth, covered tympana, pupil rhomboidal, parotoid, dorsolateral and coccygeal glands usually present, aquatic reproduction with small pigmented eggs and free-swimming larvae.

_Uperoleia micra_ sp. nov.

Tiny Toadlet
Figs. 2–4

**Holotype.** WAM R168043, an adult male collected near Bachsten Creek near the southwest corner of the Prince Regent River Nature Reserve, Western Australia (15°59′29″ S; 125°19′54″E) on 22 January 2007 by J. D. Roberts, R. Barrett, P. Doughty and M. Barrett. Call recorded; liver stored at −70°C at WAM.

**Paratypes.** WAM R168039–40 and WAM R168042, adult males, location and date as for holotype (15°59′26″S; 125°19′50″E); WAM R168044, adult male, location and date as for holotype; WAM R167989, adult female, collected from the Prince Regent River Nature Reserve (15°40′58″S; 125°34′59″E) on 21 January 2007; WAM R166476, a metamorphosing individual, collected near the Walcott Inlet, Western Australia (16°20′51″ S; 124°46′24″ E) on 21 January 2008; WAM R164897-8, adult males collected from Katers Island, Western Australia (14°26′56″S; 125°31′22″E) on 14 February 2008.
FIGURE 2. *Uperoleia micra* sp. nov.: A) WAM R164988 from Katers Island, Western Australia; B) WAM R168042; C) WAM R168044 from near Bachsten Creek, Western Australia; D) collection location of calling males (WAM R168039–40) near Bachsten Creek; males were calling from the low crevice within which had flowing water, and *U. borealis* and *U. crassa* were calling from the flooded grassy areas in the foreground (height of boulders ~ 2.5 m).

**Diagnosis.** Distinguished from congeners by a combination of small body size, presence of maxillary teeth, broadly exposed frontoparietal fontanelle, slightly tubercular skin on dorsum and upper limbs, moderately conspicuous parotoid and inguinal glands and less developed coccygeal glands, toes basally webbed, elongate inner metatarsal tubercle perpendicular to foot, dark brown dorsal surfaces with small darker spots, loreal and lateral zone stippled with bluish-white dots, pale orange-red femoral patches, speckled and slightly granular ventral surface and high-pitched rasp as an advertisement call.

**Description.** Body small, squat and rotund. Head small with slightly protruding eyes. When viewed laterally, evenly sloping snout with a rounded or truncated tip; when viewed from above, the sides of the snout gradually come to a rounded point. Canthus rostralis rounded; loreal region moderately steep and slightly concave. Sharp medial projection (symphysys of mentomeckelian bones) on lower jaw that matches notch on upper jaw. Nostrils directed upwards; nares with only a slight rim. Anterior corner of eye covered by flap of skin; at dorsal terminus the skin overlaps the skin of the brow above the eye. Posterior edge of brow projects slightly over skin on the side of the head. Tympana covered by skin and parotoid glands. One-three small infralabial glands present below angle of jaw. Tongue oval and elongate. Maxillary teeth present; vomerine teeth absent. Frontoparietal fontanelle broadly exposed. EN slightly larger than IN (EN/IN = 1.15).
Arms and hands slightly built. Arms are of moderate length (ArmL/SUL = 0.44) and the fingers unwebbed. Finger length: 3>4>2>1. Tubercles under fingers moderately developed; one on 1<sup>st</sup> and 2<sup>nd</sup>; two on 3<sup>rd</sup> and 4<sup>th</sup>. Large outer palmer tubercle on distal portion of wrist. Nuptial pad of males on inner portion of 1<sup>st</sup> finger (beginning halfway down finger), extending to base of wrist (1/4 along forearm) and slightly encroaching on palmer surface.

Legs short (TL/SVL = 0.36) and of moderate build. Toe length: 4>3>5>2>1. Tubercles under toes moderately developed; one on 1<sup>st</sup> and 2<sup>nd</sup>; two on 3<sup>rd</sup> and 5<sup>th</sup>; three on 4<sup>th</sup>. Toes basally webbed. A weakly-developed flange runs along the length of the toes. Inner metatarsal tubercle moderately developed, 1/2–1/3 the length of the 1<sup>st</sup> toe; projecting anteriorly (towards toe tips). Outer metatarsal tubercle is moderately developed and larger than inner, usually spatulate (sometimes round) and oriented perpendicular to the foot with the medial edge abrupt and the distal edge gradually sloped.

Skin with scattered low tubercles on dorsum, head and limbs. The ventral surface is slightly granular. Cloacal flap present. Parotoid and inguinal glands moderately developed; coccygeal gland discernible but poorly developed.

**Measurements.** Adult males (N = 7): SUL (mean and range in mm)—19.6 (18.0–21.5); HD—3.9 (3.5–4.4); EN—1.5 (1.3–1.8); IO—3.5 (3.2–3.8); IN—1.3 (1.2–1.4); EyeL—2.2 (2.1–2.4); ArmL—8.5 (8.1–9.0); TibL—7.0 (6.8–7.5); FTL—11.4 (10.3–12.1); EN/IN—1.17 (1.00–1.50); ArmL/SUL—0.44 (0.39–0.46); TL/SUL—0.36 (0.34–0.38).
Adult female (N = 1): SUL—20.5; HD—4.2; EN—1.4; IO—3.7; IN—1.4; EyeL—2.3; ArmL—9.0; TibL—7.3; FTL—12.0; EN/IN—1.00; ArmL/SUL—0.44; TL/SUL—0.36.

Metamorph (N = 1): SUL—19.0.

**Colouration.** In life, specimens from the mainland had a dorsum with background shade ranging from a charcoal black to dark brown, with scattered small darker blotches and faint barring on the limbs. There is a zone stippled with pale bluish-white from the tip of the snout, posterior through the loreal region and extending along the sides; also on the undersurfaces of the limbs. There is a subtle wash of orange-red on the dorsum, including more conspicuous blotches on the parotoid glands, the anterior tip of the snout, submandibular glands, vertebral zone of dorsum and upper arms. The fingers and toes are a creamy white. The ventral surface is a dull white peppered with small dark spots; the abdomen lacks the dark spots or white pigment altogether. The margin of chin is only slightly more pigmented than the rest of the chin and ventral surface. Femoral patch a pale orange-red, only moderately contrasting with background colour. The iris is a chestnut brown with a hint of green. Specimens from Katers Island were similar, but differed in having slightly lighter colouration and with inguinal glands with orange-red colouration.

In preservative, the colouration is almost completely black, with the orange-red highlights only faintly visible; the paler loreal and lateral zone is still visible.

**Advertisement call.** Table 1 summarises the main features of the call. The call is a long high-pitched rasp that has an obvious regular pulse structure and a moderate pulse rate (Fig. 4). The call also shows some evidence of frequency modulation with frequency rising later in the call.

**TABLE 1.** Call structure characteristics in *Uperoleia*. A) *Uperoleia micra* sp. nov. from near Bachsten Creek, Prince Regent River Nature Reserve; B) comparison with other *Uperoleia* species from the Kimberley region, Western Australia, and *U. daviesae* from near Darwin, Northern Territory.

<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency (Hz)</th>
<th>Duration (ms)</th>
<th>Pulses/s</th>
<th>Pulses/call</th>
<th>Temp (°C)</th>
<th>N</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>U. aspera</em></td>
<td>2778</td>
<td>33</td>
<td>170</td>
<td>5.7</td>
<td>25.6</td>
<td>3</td>
<td>Tyler et al., 1981b</td>
</tr>
<tr>
<td><em>U. borealis</em></td>
<td>2600</td>
<td>191</td>
<td>109</td>
<td>20.9</td>
<td>26.9</td>
<td>7</td>
<td>Tyler et al., 1981a</td>
</tr>
<tr>
<td><em>U. crassa</em></td>
<td>2356</td>
<td>173</td>
<td>42</td>
<td>7.3</td>
<td>24</td>
<td>7</td>
<td>Tyler et al., 1981a</td>
</tr>
<tr>
<td><em>U. daviesae</em></td>
<td>-</td>
<td>97</td>
<td>244</td>
<td>22</td>
<td>25</td>
<td>3</td>
<td>Young et al., 2005</td>
</tr>
<tr>
<td><em>U. lithomoda</em></td>
<td>3420</td>
<td>12</td>
<td>401</td>
<td>4.6</td>
<td>26</td>
<td>5</td>
<td>Tyler et al., 1981a</td>
</tr>
<tr>
<td><em>U. micra</em> sp. nov.</td>
<td>3347</td>
<td>106</td>
<td>325</td>
<td>30.3</td>
<td>27.9</td>
<td>4</td>
<td>This study</td>
</tr>
<tr>
<td><em>U. minima</em></td>
<td>3517</td>
<td>20</td>
<td>118</td>
<td>2.3</td>
<td>25.7</td>
<td>3</td>
<td>Tyler et al., 1981a</td>
</tr>
<tr>
<td><em>U. mjobergii</em></td>
<td>3272</td>
<td>225</td>
<td>98</td>
<td>22.1</td>
<td>25.6</td>
<td>3</td>
<td>Tyler et al., 1981a</td>
</tr>
<tr>
<td><em>U. talpa</em></td>
<td>2450</td>
<td>130</td>
<td>315</td>
<td>41.0</td>
<td>25.8</td>
<td>3</td>
<td>Davies &amp; Martin, 1988</td>
</tr>
<tr>
<td><em>U. trachyderma</em></td>
<td>3600</td>
<td>51</td>
<td>79</td>
<td>4.0</td>
<td>25.6</td>
<td>2</td>
<td>Tyler et al., 1981c</td>
</tr>
</tbody>
</table>
FIGURE 4. Oscillogram (a), sound spectrograms (b) and spectrum display (c) for a call of *U. micra* sp. nov. (WAM R168042). The bar in (a) and (b) represents 20 ms. In (b) we manipulated contrast, brightness and spectrum window display to maximise the loudest frequency components over pulse structure and side-bands arising from pulse rate (see Gerhardt & Huber, 2002).

**Habitat.** At Bachsten Creek, *U. micra* were calling in moist crevices in sandstone rock faces high on a ridge. One male was seen calling at the back of a narrow crevice sitting just above a broad sheet of shallow, flowing water (Fig. 2D). Other calling males were collected in crevices and cracks in rock faces with slowly flowing water from seepages among vegetation and litter. Other species calling within a few meters were *U. borealis* and *U. crassa* in a flooded grassy area and *Limnodynastes lignarius* (Tyler, Martin & Davies, 1979) along a rocky creek. On Katers Island, *U. micra* was encountered in a low valley near the top of an extensive sandstone plateau. Males were calling from a hard-capped sandstone surface with slow-flowing water forming small pools among *Triodia* clumps. Other species that were calling at the same sites were *U. borealis* and *L. lignarius*. At both sites, males were encountered after heavy early evening showers which may have stimulated calling. The individual collected from near the Walcott Inlet was found on a high flat sandstone rock platform (M. Barrett, pers. comm.).

**Distribution.** Only known to occur in the high rainfall zone (> 1000 mm/year) of the northwest Kimberley, Western Australia (Fig. 1). On the mainland, from the Prince Regent River Nature Reserve south to Walcott Inlet. Also on Katers Island.

**Etymology.** Derived from the Greek *mikros*, alluding to this species’ small size and to the nearby *U. minima* which is similar in size and external appearance. Used as an adjective.

**Comparisons with other species.** *Uperoleia* is a genus characterized by low morphological diversity. Nevertheless, *U. micra* is distinguished from congeners from a combination of internal and external characters as well as call structure. The small (~ 2 cm) body size rules out *U. marmorata* (30.1 mm; Tyler et al. 1981a). Within the genus, only *U. daviesae* Young, Tyler and Kent, 2005 has both the presence of maxillary teeth and a broadly exposed frontoparietal fontanelle like *U. micra*. This species also shares tubercular skin and basal webbing, but can be distinguished from *U. micra* by light grey dorsum with faint purple tone,
absence of pale loreal and lateral zone and less developed outer metatarsal tubercle. In addition, *U. daviesae* has only been found in flooded grasslands (versus sandstone boulders and escarpments) and although its call is similar to *U. micra*, it has fewer pulses and a lower pulse rate (Table 1).

The most similar Kimberley species in external appearance to *U. micra* is *U. minima* which occurs at Mitchell Plateau and may prove to be sympatric with *U. micra* (see Fig. 1). Both species have small body size, dark mottled coloration, pale speckled venter and tubercular skin. They can be distinguished, however, by the following external traits. In *U. minima*, the dorsal tubercles are denser and often form short scapular folds in some specimens; in *U. micra* the tubercles are less dense and lower. In *U. micra*, the outer metatarsal tubercle is elongate and orientated perpendicular to the foot (Fig. 3D); in *U. minima* this tubercle is round (Fig. 3E). In *U. micra*, males have few markings on the chin; in *U. minima* there is a conspicuous dark pigmentation bordering the edge of the jaw. Internally, *U. micra* has maxillary teeth and a broadly exposed frontoparietal fontanelle, whereas *U. minima* lacks teeth and has well-developed frontal bones.

Calls of *U. micra* can be readily distinguished from other Kimberley species. *Uperoleia aspera*, *U. litho moda, U. minima* and *U. trachyderma* have a much shorter call duration and lower pulse numbers (Table 1b); the calls sound like ‘clicks’ to the ear. *Uperoleia borealis, U. crassa* and *U. mjobergii* have much longer call durations and higher pulse rates (Table 1b); the calls sound like a short rasp or grate. The call of *U. talpa* has a similar pulse rate to *U. micra* but much lower frequency and higher pulse number. The calls of all eight Kimberley species are clearly discrete in two or more characters. The variation in temperature between sets of recording was 3.9°C, but temperature is unlikely to have affected any metric used to differentiate calls over that small a range. For example, pulse rate in *U. laevigata* Keferstein, 1867 of eastern Australia is strongly temperature dependent, but the regression coefficient is only 5.56 which would generate a maximum increment in pulse rate of 21.7 between the high and low temperatures compared here (data reported as *U. rugosa* Andersson, 1916 by Robertson 1986; Davies & Littlejohn 1986). The only other *Uperoleia* species known from the Kimberley is *U. marmorata*, but no call data are available.

**Remarks.** The discovery of another species of *Uperoleia* brings the total number of species in the genus to 26. This is the second-largest genus of Australian frog after *Litoria*. Continued exploration of remote areas of the Kimberley and revision of *Uperoleia* using morphology, genetics and call data may reveal further species.

The new species has only been found at four locations in the high rainfall zone of the northwest Kimberley. This area is rich with terrestrial vertebrate species, including frogs, lizards, snakes and mammals (Storr & Smith 1975; Smith & Johnstone 1991). Biological surveys continue to discover new species of vertebrates with regularity, including other new species of frogs (Doughty & Anstis 2007; Doughty *et al.* in press). Invertebrate and plant species are being discovered at even higher rates (e.g. McKenzie *et al.* 1991; Barrett 2006; Harvey & Edward 2007). These findings indicate that the true biodiversity of the region is underestimated. With recent interest in increasing mining, agriculture and tourism in the region, it is essential that large areas are set aside in managed reserves to ensure protection of both described species and additional new species awaiting discovery and description.

**Acknowledgements**

We thank Alcoa of Australia for funding the Western Australian Museum’s Alcoa Frog Watch program and the Department of Environment and Conservation’s (DEC) Kimberley Islands Survey for funding the fieldwork. We thank C. Stevenson for preparing the distribution map and photographs of the holotype. Special thanks are extended to our colleagues on the field surveys: P. Kendrick, M. Barrett, R. Barrett and B. Maher at the Prince Regent River in January 2007 and V. Kessner, G. Keighrey, M. Lyons and T. Anders on the DEC Kimberley Islands Survey in February 2008.