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ABSTRACT - The diversity, productivity and health of tropical reef ecosystems are at risk from
cumulative anthropogenic and climate stressors. To provide insight into natural patterns of community
structure and to set benchmarks to detect change, it is important to establish baselines for common
community metrics, such as benthic cover, while ecosystems are nearpristine. Here we report the
findings from six years of shallow-water marine benthic surveys (0-15 m depth) in the Kimberley,
Western Australia. This dataset provides the first broad-scale quantification of the general composition
and structure of reefs in this little known region. We show that the Kimberley reef system is
heterogeneous, with distinct inshore-offshore, intertidal-subtidal and subregional patterns of community
structure. The dominant category of live benthos in the Kimberley is hard coral (23.81% =+ 1.28%),
followed by turf algae (14.40% = 1.51%) and macro-algae (7.05% + 1.00%). At the regional scale, soft
corals and sponges were minor contributors to benthic cover accounting for less than 3%. Benthic
composition and structure was significantly different between all five subregions, with the exception
of Inshore North and Inshore South, which share traits, such as a higher level of macroalgae and lower
level of turf and coralline algae, than the level recorded in the Inshore Central subregion. Offshore,
the southern subregion (Rowley Shoals) had the highest level of hard coral cover (27.92% + 2.51%),
and inshore the highest level of hard coral cover was recorded in the northern subregion (25.39% =+
3.00%). Overall, this dataset provides a reference for future marine conservation planning in the region
and confirms that shallow benthic communities of the Kimberley are an important part of Australia’s
tropical reefscape.
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INTRODUCTION

Tropical reefs are increasingly threatened
by severe disturbances such as cyclones, in
combination with more chronic threats like global
warming. While reefs are naturally dynamic
systems, there is growing concern that coral reef
communities are being irrevocably damaged,
changed, and/or simplified (Dornelas et al. 2014;
Magurran et al. 2015; Smith et al. 2016). As a
result, the ability for ecosystems to recover after
disturbances is increasingly questioned (van
Hooidonk et al. 2016; Hughes et al. 2017). Globally,
most coral reef ecosystems are moderately to
severely damaged by human activities, such as
fishing and pollution; hence it can be difficult to

separate natural from unnatural changes (Jackson
2001; Knowlton and Jackson 2008). The ability
to detect significant change and substantiate
recovery in long-term monitoring programs is
dependent on the availability of comparative and
rigorous pre-impact reference data. Obtaining
baseline knowledge concerning the structure
and functioning of ecosystems in the absence of
human impacts is fundamental for the effective
management and conservation of coral reef
ecosystems.

In diverse tropical reef ecosystems, habitat
attributes such as the percentage cover of benthic
taxa and topographic complexity are relied upon
to inform management about reef condition
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(Wilkinson 2008; Sweatman et al. 2008, 2011;
Arias-Gonzalez et al. 2011; Ateweberhan et al.
2011). Percent live hard coral cover is the most
commonly used metric to monitor and inform
managers about coral reef status (Bruno and Selig
2007; De’ath et al. 2012; Gilmour et al. 2013). The
abundance and composition of live hard coral is
related to disturbance history (De’ath et al. 2012)
and correlated with density-dependent ecosystem
processes, such as disease prevalence (Bruno et al.
2007), the abundance of corallivorous reef fishes
(Bell and Galzin 1984; Jones et al. 2004; Komyakova
et al. 2013) and the abundance and diversity of
other marine invertebrates (Przeslawski et al. 2008;
Gibson et al. 2011).

While many studies focus on the level of hard
coral cover as a proxy of reef condition, other
benthic categories can also provide meaningful
indicators of reef status and resilience. For
example, monitoring the cover of macroalgae
and soft corals is especially relevant for detecting
phase shifts and for interpreting the implications
of changes to ecosystem structure on food-web
dynamics (Sandin et al. 2008; Cheal et al. 2010).
Macroalgal overgrowth on tropical reefs can
indicate a lack of herbivorous grazing (Hughes et
al. 2007) which may signify overfishing (Jackson
et al. 2001), or be a competitive response to coral
mortality events (Diaz-Pulido et al. 2009). Similarly,
a shift from hard coral to soft coral dominance can
be associated with reef degradation (Przeslawski et
al. 2008; Baum et al. 2016). Additionally, the extent
and composition of abiotic substrate can influence
the diversity of fish and other invertebrates such
as echinoderms, marine worms, molluscs and
crustaceans (Komyakova et al. 2013; Graham et
al. 2014). Hence, monitoring and reporting on
a variety of metrics, in addition to coral cover,
can provide useful information to managers
concerning the status of different taxa, enabling
the overall resilience of dynamic tropical reef
ecosystems to be assessed.

The reef ecosystems of the Kimberley are
among the least impacted in the world due to
low population density (Halpern et al. 2008) and
provide a unique opportunity to examine the
composition and structure of reef environments in
the absence of land-based anthropogenic impacts.
Coral reefs in the region, as first described by
Teichert and Fairbridge (1948), fall into two general
groups — fringing reefs that have formed around
coastal islands across the inner Sahul Shelf and
the large platform reefs, shoals and shelf-edge
atolls occurring offshore. The inshore fringing
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reefs are influenced by macrotides (>11m), turbid
waters and low wave energy (DEC 2009; Wilson
2014). The large semi-diurnal tides culminate in
intertidal reef communities being subaerially
exposed during spring low tides for up to 3.5
hours (Richards et al. 2015), and subjected to high
current velocities and turbidity levels during
tidal ebb and flow (Ivey et al. 2016). Conversely,
the submerged midshelf shoals and continental
edge offshore atolls represent stable, clear-
water, low productivity coral reef environments
(Wilson 2013).

While the region has largely escaped land-based
anthropogenic disturbances, there is a long history
of traditional fishing and harvesting in the region
(Fox 1998), modest commercial fishing operations
(Molony et al. 2011) and increasing recreational
fishing and tourism activities. Additionally, the
region is an important reservoir of oil and gas
reserves (Moore et al. 2016) and the exploration
and exploitation of these resources presents
environmental risks to species and habitats in the
region (Butt et al. 2013; Kark et al. 2015). In 2009
Australia’s largest oil spill event occurred in the
vicinity of Ashmore Reef and the midshelf shoals
(Li et al. 2010), but the lack of before-impact data
made it difficult to determine the extent of the
environmental effects (Watson et al. 2009).

The offshore atolls have also been impacted by
numerous climate-induced coral bleaching and
mortality events. In 1998 and 2016 widespread
coral bleaching events severely impacted Scott
Reef (Smith et al. 2008; Gilmour et al. 2013; Hughes
et al. 2017) and in 2003 and 2010 Ashmore Reef
was affected by coral bleaching (Ceccarelli et al.
2011; Heyward 2011). While the inshore Kimberley
reefs appeared to escape the global bleaching
events of 1998 and 2013, localised coral bleaching
was recorded at reefs in the southern inshore
Kimberley for the first time in 2016 (Le Nohaic et
al. 2017). Hence, even though it is hypothesised
that corals in the inshore Kimberley are tolerant of
extreme environmental conditions (Richards et al.
2015); they are not immune to bleaching (Schoepf
et al. 2015).

Here we report the findings from six years of
baseline surveys in the marine environments
of the Kimberley to provide a primary dataset
quantifying the benthic composition and structure
of Kimberley reefs. This dataset can be used
as a reference for future monitoring and is
available to inform managers about the variety
of benthic communities in the region in order to
facilitate the development of representative marine
management reserves.
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More specifically we seek to answer the following
questions:

1. What are the major abiotic and biotic
components that structure shallow water marine
benthic communities in the Kimberley?

2. Are macro-scale environmental influences, such
as tidal zone and shelf position major drivers
of spatial structuring in Kimberley benthic
communities?

3. Is there spatial partitioning at a subregional
level?

METHODS

FIELD SURVEYS

Benthic community composition was recorded at
single time-points from 2009-2014 at 164 stations,
from 33 island/reef groups from a survey area
within the Kimberley Project Area (Figure 1, see
Sampey et al. 2014 for further descriptions of
the Project Area and Bryce et al. 2017 for further

descriptions of the stations surveyed). One hundred
survey stations were subtidal (mean depth 11.5 m,
range 5-16 m, depending upon tidal amplitude)
and 64 stations were intertidal (mean depth 0.5 m,
range 0-4 m) (see Appendix 1). The subtidal sites
were generally reef slopes, patch reef or submerged
lagoonal habitats that were surveyed on SCUBA.
Intertidal sites were mid to lower littoral reef flats
surveyed by reef-walking or snorkeling at low tide
when the reefs were subaerially exposed.

The number of stations surveyed at each reef
varied depending on the size of the reef, the
prevailing weather, oceanic conditions (tidal
amplitude, currents, water visibility) and any
overarching occupational safety considerations,
such as the presence of crocodiles, diver nitrogen
loads and vessel restrictions. Thus, while only
a single station was surveyed at some reefs, six
reefs were more intensively surveyed with over 10
separate stations surveyed (Ashmore Reef, Long
Reef, Cassini Island, Montgomery Reef, Adele
Island, and Rowley Shoals; see Figure 2). These
reefs represent the extremes of any possible cross
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FIGURE 1 The Kimberley Project Area (green shaded area) with survey stations (red dots) and subregions (blue
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shelf and latitudinal benthic gradients. For further
discussion of site choice refer to Bryce et al. (2017).

A combination of photo transects (2009, 2010,
2011 and 2012) and in-situ point-intercept (2013,
2014) assessments were undertaken. In the case of
photo transects, 25 replicate 1 m? photographs were
taken along each of three randomly placed 25 m
transects. Coral Point Count with Excel extension
software (Kohler and Gill 2006) was then used to
determine the benthic composition directly below
two randomly placed points per image (50 points
per transect). For in-situ assessments (2013-2014),
the benthic composition directly below 50 points
(every 50 cm) was determined across each of three
randomly placed 25 m transects. The photo-transect
and in-situ point count methodologies are well
accepted (Hill and Wilkinson 2004) and the data
are comparable as the number of point counts were
identical (Jokiel et al. 2015).

Given the large number of stations surveyed
over such a large area, the stations were separated
into five subregions, which were defined according
to latitude and bathymetry and designated as:
Offshore North, Offshore South, Inshore North,
Inshore Central and Inshore South (Figure 1). For
this analysis inshore and offshore were defined
by bathymetry with respect to distance from the
coast, where inshore extended from the mainland
to the 100 m bathymetric contour and offshore
extended deeper from 101 m (see Figure 1).
To ameliorate occupational safety concerns only
islands and reefs occurring at least 10 km from
the mainland and distanced from river outflows
were surveyed.

Benthic cover was classified into 13 coarse
biotic and abiotic categories. Biotic categories
were: hard corals, soft corals, sponges, seagrasses,
macroalgae, turf algae, coralline algae (encrusting
forms), crustose algae (branching calcareous
forms incl. Halimeda sp.) and other invertebrates
(including zooanthids, molluscs, holothurians,
ascidians and bryozoans). Abiotic categories were:
sand, shell grit, rubble, bare rock and silt.

DATA ANALYSIS

Summary statistics were calculated for the mean
percent cover (+ SE) of each benthic category in
the area surveyed, according to shelf position
(inshore/offshore), tidal zone (intertidal/subtidal)
and subregion. To test whether environmental
heterogeneity differed between factors
we performed an analysis of homogeneity of
multivariate dispersions (PERMDISP) in Primer-E
Version 7 (Clarke and Gorley 2015). The benthic
cover variables were square-root transformed
to reduce the influence of the common taxa and
increase the influence of the rare taxa and a

resemblance matrix of similarities was calculated
using the Bray-Curtis coefficient. The Bray Curtis
similarity coefficient was used because it does not
consider joint absences and this is the standard
coefficient used in biological assemblage and
community analyses (Clarke and Gorley 2015). The
resulting resemblance matrix was visualised using
Principal Coordinates Analysis (PCO).

To test for the significance of differences in
benthic community structure ANOSIM were
conducted on the factors of shelf position (inshore/
offshore), tidal zone (intertidal/subtidal) and
subregion. The assumption of homogeneity of
dispersions was satisfied in PERMDISP tests;
hence we further explored the factors influencing
community structure and the presence of
interaction effects with Permutational ANOVA
(PERMANOVA) (Clarke and Gorley 2015). This
analysis was conducted with type III sums
of squares using a fixed effects design where
tidal zone and subregion were nested in shelf
position. Furthermore, to examine which variables
are contributing to the observed differences in
community structure we conducted one-way
analysis of similarity (SIMPER) and visualised the
patterns for the key groups via PCO.

To better visualise significant differences
identified through our PERMANOVA analysis we
used bootstrapping of group means and ordination
of these results with non-metric MDS, as suggested
by Clarke and Gorley (2015). This approach is a
multivariate analogue of univariate means plots
with error bars, and is an effective way to display
differences in groups that contain high sampling
variability, which defines clear ordinations in two
dimensions (i.e. high stress). Use of group means
averaged over multiple bootstraps greatly reduces
the sampling variability and provides for improved
interpretability of ordinations.

RESULTS

REGIONAL PATTERNS IN BENTHIC COVER

The dominant category of live benthos in the
Kimberley survey area was hard coral (23.81%
+ 1.28%) (Table 1). However, a large variation in
the level of hard coral cover was recorded across
the survey sites (Appendix 1). Turf algae was the
second largest contributor to benthic cover in
the region (14.40% + 1.51%) followed by macro-
algae (7.05% = 1.00%). At the regional scale, soft
corals, sponges and other benthic invertebrates
were minor contributors to benthic cover as each
accounted for less than 3% of the overall cover.
Appendix 1 contains summary data for the mean
cover of the remaining benthic categories at all
stations surveyed.



FIGURE 3
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Intertidal habitat: offshore and inshore. A) Low-growing corals on the shallow outer reef flat at Ashmore
Reef (129/K13); B) Consolidated reef pavement with high coral cover at Clerke Reef (Rowley Shoals: 172/
K14); C) Flat cemented reef platform with turf algae and motile sand at Browse Island (104/K12); D) Mid-
littoral reef pavement extending down to a narrow, honeycombed fore-reef ramp at Long Reef (56/K10).
The tide pools are fringed with small coral colonies and the ramp has a high cover of Tubipora musica
(28%) (Richards et al. 2013); E) Intertidal reef platform at Patricia Island (114/K12) with an abundance of
hard coral colonies; F) The reef platform on the north side of Woodward Island (100/K12) is dominated
by cropped Sargassum and turf algae; G) Cemented reef platform with many tide pools, coralline algae
and turf algae at Condillac Island (112/K12); H) A steep forward ramp with drainage channels leading to a
seaward terrace dominated by turf and coralline algae at Montgomery Reef (16/K09).
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FIGURE 4

Subtidal Inshore habitat. A) Gently sloping reef at Long Reef (58/K10) with coral outcrops covered with
sponges, hard corals, soft corals, sea fans, hydroids and encrusting molluscs; B) Long Reef (50/K10): inner
lagoon habitat near a sand cay with coarse coralline sand, small rocky outcrops and a high abundance of the
sponge, Phyllospongia sp.; C) High energy outer reef edge at Robroy Reefs (118/K12) with large Montipora
plates; D) Station 119/K12 at Robroy Reefs: a plain of coarse coralline sand with large rocky outcrops covered
with hard corals, sponges, hydroids and algae; E, F) A patch reef on the eastern side of the West Montalivet
Island (117/K12). Sea whips, sea fans and sponges, such as the large barrel sponge, Xestospongia testudinaria,
were well represented at the station, in addition to expansive areas of branching Acropora sp.; G) The seaward
reef edge at Patricia Island (114/K12) is made up of single and coalesced outcrops covered with coralline algae,
hard corals, soft corals, sponges, and a fine dusting of silt; H) Large rocky outcrops at Adele Island (06/K09)
formed a deeply incised, ledged and undercut vertical wall covered with hard corals and encrusting soft corals.
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FIGURE 5 Subtidal Offshore habitat. A, B) Steep outer slope at north Ashmore Reef (130/K13) is deeply incised with caves
and small ledges. The slope and slope crest (5-7 m) display a diverse assemblage of hard and soft corals; C)
Station 142/K13, north Hibernia Reef. Reef crest of the fore-reef slope is mainly covered by hard corals and a
diverse assemblage of algae including Halimeda sp.; D) The cemented fore-reef slope at north Hibernia Reef
(144/K13) with "hillocks" and ‘gullies” and a diversity of soft and hard corals between; E) Low profile patch reef at
Browse Island (101/K12) consisting of small, coalescing outcrops with colonies of hard corals and turf algae; F)
The edge of a large mid-littoral tide pool (depth: 6 m) at Ashmore Reef (138/K13). Acropora thickets dominated
throughout the base of the pool; G) A steep, high profile reef at the south east end of Mermaid Reef (Rowley
Shoals: 178/K14) displays an impressive coverage of hard corals with a high abundance of turf and coralline
algae; H) Thickets of Acropora sp. were dominant in the lagoon of Mermaid Reef (179/K14).
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TABLE 1 Summary statistics for the overall mean cover (+ SE) of the nine major biotic categories encountered in the
Kimberley survey area, within tidal zone, shelf position and subregion. Maximum values within zone, position
and subregion are marked in bold.

Hard  Soft Other Turf Coralline Macro
Coral  Coral Sponge Inverts  Algae Algae Algae Halimeda Seagrass
Mean 23.81 2.66 2.30 0.65 14.40 4.21 7.05 1.61 0.18
Region Wide
SE 1.28 0.33 0.23 0.10 1.51 0.50 1.00 042 0.10
Mean 14.38 0.77 145 017 19.19 1.85 15.48 0.23 0.41
Intertidal
SE 1.92 0.19 0.34 0.10 3.31 0.52 2.15 0.13 0.26
Mean 29.85 3.88 2.85 0.96 11.34 5.72 1.65 2.48 0.04
Subtidal
SE 141 0.50 0.31 0.15 1.21 0.71 0.27 0.68 0.03
Mean 24.45 2.05 2.52 040 8.30 3.06 9.45 043 0.02
Inshore
SE 1.78 0.35 0.30 0.10 1.67 0.65 1.54 0.15 0.01
Mean 22.76 3.67 1.94 1.06 24.45 6.10 3.10 3.54 0.45
Offshore
SE 1.72 0.66 0.37 0.20 242 0.73 046 1.06 0.27
Mean 23.59 2.56 3.37 0.36 3.54 2.72 7.58 0.08 0.00
Inshore North
SE 3.00 0.80 0.64 0.18 1.90 0.75 2.55 0.04 0.00
Mean 23.65 3.05 1.45 0.61 22.66 7.35 3.60 1.228 0.10
Inshore Central
SE 3.67 0.75 043 0.26 518 2.33 1.35 0.48 0.06
Mean 24.16 117 243 0.31 4.55 1.13 13.85 0.27 0.00
Inshore South
SE 2.82 0.31 041 0.13 1.61 042 2.71 0.21 0.00
Mean 17.26 5.57 3.16 1.20 16.19 5.55 2.68 7.11 0.89
Offshore North
SE 1.90 1.19 0.63 0.30 195 0.93 0.65 199 0.54
Mean 27.92 1.89 0.80 0.94 32.20 6.61 3.50 0.19 0.03
Offshore South
SE 2.52 043 0.29 0.28 3.86 1.12 0.64 017 0.02
Important differences were obS(?rved in t'he TABLE 2 Summary statistics for the overall mean cover
level of cover of all major benthic categories (= SE) of the four major abiotic categories of
between intertidal and subtidal zones. While benthos encountered in the Kimberley survey
some intertidal reefs had a high level of coral area, within tidal zone and shelf position.
cover (e.g. Patricia Island, Figure 3E), hard Maximum values are marked in bold.
coral cover was generally twice as high in
subtidal zones (see Figures 4, 5). Similarly, soft Rock Shell
corals, sponges, invertebrates and coralline algae Sand Rubble & Silt Grit
were more commonly encountered in subtidal
habitats. Other types of marine flora (turf algae, Intertidal Mean 1518 1113 1947 018
macroalgae, Halimeda spp. and seagrasses) were nerhida SE 187 130 263 0.10
more commonly encountered in the intertidal
habitats. Amongst the abiotic groups, rock, silt . Mean 1210 1152 1664  1.05
Subtidal

and sand dominated both intertidal and subtidal SE 153 129 1.89 1.00
zones, but these groups reached their highest
level of coverage in the intertidal zone (Table 2). In

Mean 12.09 8.64 27.56 1.03
Inshore —

the subtidal zone there was a higher coverage of SE 136 1.01 1.85 0.98
rubble and shell grit. Mean 1531 15.85 160 0.18
Substantial differences were also observed in Offshore ———

the percentage composition of benthic categories SE 219 168 081 010
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at inshore and offshore locations. Hard corals
were the dominant taxa across the shelf, but
overall, they reached a slightly higher level
of cover inshore. The soft coral cover was at
its highest level offshore as was turf algae,
coralline algae, Halimeda spp., seagrasses and
other invertebrates (holothurians, molluscs etc.).
Sponges and macroalgae were more commonly
encountered inshore. It should be noted that
seagrasses were rarely encountered at any of the
survey sites. Amongst the abiotic groups, rock and
silt dominated the inshore bioregions, whilst the
offshore bioregions had a higher coverage of sand
and rubble (Table 2).

There was significant subregional variation in
the level of cover recorded on individual transects.
For hard corals the level of percent cover was
greatest in the Offshore South subregion (Rowley
Shoals, 27.92% + 2.52%) and lowest in the Offshore
North (Ashmore and Hibernia Reefs, 17.26% =+
1.90%). For soft corals, the reverse pattern was
observed with the highest level of cover in the
Offshore North (5.57% + 1.19%). Sponges reached
their highest level of cover (3.37% = 0.64%) in
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the Inshore North, while other invertebrates
(holothurians, molluscs, anemones etc.) were more
likely to be encountered in the Offshore North.
Amongst the marine flora, turf algae reached
its highest level of cover in the Offshore South,
whilst seagrasses and Halimeda spp. were more
prevalent in the Offshore North. The highest
level of coralline algal cover was recorded in the
Inshore Central, whilst macroalgae dominated in
the Inshore South.

THE INFLUENCE OF SHELF POSITION AND TIDAL ZONE
ON BENTHIC COVER

When visualised as a PCO, over 70% of the
observed variation in benthic structure was
accounted for by the first two axes (Figure 6).
PERMANOVA results confirmed there is a highly
significant difference between inshore and offshore
communities (t = 6.7804, Pperm = 0.0001) and between
subtidal and intertidal communities (t = 5.3287,
P m = 0.0001). The SIMPER analysis of the group
contributions to the average similarity between
inshore and offshore locations (Table 3) supports
the main vectors in the PCO (Figure 6) indicating
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FIGURE 6

Principal coordinates analysis of benthic community composition in the Kimberley survey area. Stations

clustered according to shelf position (inshore offshore) and tidal zone (intertidal/subtidal). The vectors indicate

the principal drivers of similarity between stations.
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TABLE 3 SIMPER analysis of the species contributions to the average similarity between shelf position, tidal zone and
subregion. Included are the top three benthic groups explaining the largest percent of the variance. The principal
driver is marked in bold.

Species Avg Abund. Avg Abund. Avg Diss. Diss./SD Cont. %
Inshore Offshore

Rock/Silt 4.75 0.48 9.69 1.88 18.55

Turf Algae 1.52 4.64 8.50 1.68 16.28

Sand 3.85 3.18 5.43 1.31 10.40
Subtidal Intertidal

Rock/Silt 2.96 342 7.20 1.28 14.22

Turf Algae 2.57 2.90 7.10 1.23 14.02

Macroalgae 0.85 3.24 6.05 1.24 11.95
Inshore Intertidal Inshore Subtidal

Macroalgae 3.69 0.31 7.95 1.49 16.21

Hard Coral 3.35 5.66 6.61 1.50 13.48

Rock/Silt 411 5.47 6.14 1.28 12.53
Offshore Intertidal Offshore Subtidal

Hard Coral 2.76 4.97 5.83 1.57 14.23

Turf Algae 6.19 4.19 5.67 1.32 13.85

Rubble 2.67 3.85 429 1.37 10.46
Inshore Intertidal Offshore Intertidal

Turf Algae 1.98 6.19 11.52 1.69 21.22

Rock/Silt 4.11 0.94 8.85 1.44 16.30

Macroalgae 3.69 1.62 6.14 1.32 11.31
Inshore Subtital Offshore Subtidal

Rock/Silt 5.47 0.35 11.00 2.93 2222

Turf Algae 1.11 4.19 7.21 1.79 14.58

Rubble 1.63 3.85 6.04 1.48 12.21
Offshore North Offshore South

Sand 4.15 227 6.01 1.35 15.69

Turf Algae 3.81 5.42 4.29 1.12 11.21

Hard Coral 3.80 5.09 412 1.20 10.75
Offshore South Inshore South

Turf Algae 5.42 0.96 10.79 1.98 19.92

Rock/Silt 0.00 4.62 10.46 1.88 19.29

Rubble 3.79 241 5.39 1.32 9.94
Offshore North Inshore North

Rock/Silt 0.99 5.33 9.57 2.02 17.96

Turf Algae 3.81 0.65 7.60 2.29 14.25

Sand 4.15 2.76 6.04 1.33 11.34
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Species Avg Abund. Avg Abund. Avg Diss. Diss./SD Cont. %
Inshore North Inshore Central

Turf Algae 0.65 3.92 8.67 1.31 18.40

Rock/Silt 5.33 4.15 5.85 1.19 12.36

Sand 2.76 2.35 522 1.28 11.09
Inshore North Inshore South

Macroalgae 1.54 2.74 6.55 115 15.29

Rock/Silt 5.33 4.62 5.98 1.19 13.96

Hard Coral 4.65 4.36 5.85 1.24 13.66
Inshore Central Inshore South

Turf Algae 3.92 0.96 8.34 1.32 17.15

Rock/Silt 4.15 4.62 6.08 1.22 12.50

Macroalgae 1.07 2.74 591 1.18 12.15

the cross shelf separation is driven by the high
cover of rock and silt at inshore locations, and the
higher cover of turf algae and sand offshore (see
also Tables 1, 2). The SIMPER analysis also supports
the main vectors of the PCO, which suggest there
is higher cover of rock and silt, turf algae and
macroalgae in intertidal zones. Within the inshore
region, the intertidal zone is distinguished from the
subtidal zone by a higher coverage of macroalgae
and a lower coverage of hard corals and rock/silt.
However, offshore, the main dissimilarity between
the intertidal and subtidal communities is a higher
level of hard coral and rubble cover in the subtidal
zone while the intertidal zone has a higher level of
turf algae cover. Overall, turf algae, hard corals and
macroalgae are the main biotic drivers of significant
differences and PCOs of community composition
provides strong visual support for the way these
groups are structured across the shelf and depth
gradients (Figure 7).

SUBREGIONAL TRENDS IN BENTHIC COVER

The PERMANOVA results demonstrate
highly significant differences between benthic
assemblages from all subregions with the exception
of the Inshore North and Inshore South, which
were non-significant at the p <0.05 level (Table
4). These patterns are visualised in the non-
Metric multidimensional scale plot which shows
bootstrapped subregional means (n = 100 re-
samples with replacement) with 95% confidence
(Figure 8). The ordination provides powerful
visual support for the PERMANOVA results

signifying a strong similarity between the
intertidal communities of the Inshore North and
Inshore South, along with a strong similarity
between the subtidal communities of these
subregions. There is also a small amount of
overlap between the subtidal communities in the
Inshore North and Inshore Central (Figure 8).

The SIMPER analysis shows the main groups
driving the differences between the Offshore
South and Offshore North are the higher levels of
turf algae and hard coral cover in the former and
the higher level cover of sand in the latter (Table
3). Within the inshore subregions the higher level
of turf algae in Inshore Central distinguishes it
from the Inshore South or Inshore North, with
the former distinguished by higher hard coral
cover and the latter by higher macroalgae cover.
Abiotic groups are also important drivers of
difference between inshore subregions, with the
lower level of rock and silt in the Inshore Central
distinguishing it from the Inshore North and
Inshore South (Table 3).

FINE-SCALE PATTERNS IN HARD CORAL COVER

Based on the results from the six locations that
were intensively surveyed (see Figure 2), there
is considerable heterogeneity in the level of hard
coral cover within reefs (Figure 9). Cassini Island
had the highest reef-wide hard coral cover with
29.64% =+ 5.36% followed by the Rowley Shoals
(2792% + 2.51%), Adele Island (27.64% =+ 5.78%),
Montgomery Reef (17.67% =+ 3.28%) and Ashmore
Reef (15.83% =+ 2.20%). Furthermore, there was a

*
+
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community structure. Bubbles are proportional to the abundance of each taxa.

Principal coordinates analysis of community composition of the three main biotic drivers of regional patterns in



88

Z. RICHARDS, M. BRYCE AND C. BRYCE

TABLE 4 PERMANOVA results from pairwise tests of the factors influencing community structure and the presence of
interaction effects.
Factor Test t P(perm)
Shelf position (Inshore) Inshore South, Inshore Central 3.1952 0.0001***
Inshore South, Inshore North 1.2992 0.1605 ns
Inshore Central, Inshore North 3.3794 0.0001***
Shelf position (Offshore) Offshore North, Offshore South 41204 0.0001***
Shelf position x habitat Subtidal: inshore, offshore 8.1415 0.0001***
Intertidal: inshore, offshore 3.4196 0.00071***
Inshore: subtidal, intertidal 5.9987 0.0001***
Offshore: subtidal, intertidal 29701 0.0001***
Shelf position (inshore) x Inshore South, Inshore Central 2.5832 0.0001***
tidal zone (subtidal)
Inshore South, Inshore North 1.2267 0.1911 ns
Inshore Central, Inshore North 1.8092 0.0201 ns
Shelf position (inshore) x Inshore South, Inshore Central 24787 0.0016*

tidal zone (intertidal)

Inshore South, Inshore North

1.5463 0.0713 ns

Inshore Central, Inshore North 2.9149 0.0002**
Shelf position (offshore) x Offshore North, Offshore South 3.2789 0.0001***
tidal zone (subtidal)
Shelf position (offshore) x Offshore North, Offshore South 3.6862 0.0004**

tidal zone (intertidal)

slight tendency for hard coral cover to be high on
north-east exposures of individual reefs, although
all reef aspects were not comprehensively surveyed.

Across all surveyed stations the highest mean
coral cover was recorded on the mid-littoral reef
platform at station 41/K10, Cassini Island (76.00%
+ 6.23%). High coral cover was also recorded in
subtidal habitats at station 83/K11, Brue Reef
(73.67% = 7.06%); on the reef slope within the
channel at 5/K09 Adele Island (66.00% = 5.03%);
on the slope at 69/K11 on an unnamed patch-
reef outcrop (62.00% =+ 2.31%) and on the reef
slope at 149/K14, Mermaid Reef (56.00% = 0.10%).
Intertidally, the station with the highest mean
level of hard coral cover was station 163/K14 at
Imperieuse Reef (45.00% = 3.00%) followed by 21/
K09, Montgomery Reef (42.00% =+ 0.00%); station
172/K14, Clerke Reef (37.00% =+ 10.00%) and at 3/
K09, Adele Island (33.34% + 2.67%) (Appendix 1).

DISCUSSION

This dataset consisting of 164 stations across
33 reef/island groups is the first region wide
compilation of benthic community structure
and composition data for the Kimberley marine
wilderness area. It shows that the Kimberley reefs
are heterogeneous and confirms the assumption
that distinct offshore and inshore communities
exist off the Kimberley coast (Wilson 2013; Richards
et al. 2014). There are also clear distinctions
between the intertidal and subtidal communities
and spatial partitioning that reflects macro-scale
environmental influences.

The major biotic components that structure
reefs in the region are hard corals, turf algae and
macroalgae. The offshore reefs have a higher
coverage of turf algae, Halimeda spp., coralline
algae and soft corals than the inshore reefs, but the
inshore reefs have a higher coverage of hard corals,
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sponges and macroalgae. Subtidally, there is higher
cover of hard corals, soft corals, sponges, Halimeda
spp., coralline algae and other invertebrates, but
intertidally there is a higher cover of turf algae,
macroalgae and seagrasses. The highest level of
macroalgal cover is found in inshore intertidal
zones and the inshore subtidal zones have the
highest level of hard coral cover. Soft corals reached
their highest level of coverage in offshore subtidal
zones, and sponges attained the highest level of

cover in inshore subtidal regions. Such differences
in community composition are not surprising given
the distinctly different environmental settings
experienced across the shelf and across depths
(Thackway and Cresswell 1998; Wilson 2013; Bryce
et al. 2017).

We did not measure environmental parameters
in this study. However, benthic organisms
living at the land-sea interface in the inshore
Kimberley are governed by a daily macrotidal
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Adele Island

FIGURE 9

cycle and a fortnightly neap-spring tidal cycle
that sees tidal oscillations range in amplitude
from 3-11 m (Thackway and Cresswell 1998).
Intertidal communities must withstand multiple
stressors including subaerial exposure at low tide,
ﬂuctuating and sometimes extreme temperature,
sunlight and wind conditions and physical damage
from waves and freshwater inundation (Glynn
1976; Le Tissier and Brown 1996; Dunne and Brown
2001). Despite extreme environmental conditions,
previous studies have shown exceptionally diverse
intertidal coral communities exist in the inshore
Kimberly (Wilson et al. 2011; Richards et al. 2015).
We show the mean level of hard coral cover
on inshore intertidal reefs (14.94% =+ 2.34%) is
three times higher than an earlier estimate of
intertidal hard coral cover (<5% see Purcell 2002)
and higher than the level of intertidal hard coral
cover recorded offshore (11.91% = 3.60%). While
this finding may at first seem surprising, it most
likely relates to the higher level of wave energy
and subsequent scouring experienced by offshore
reef systems, especially during cyclone and
storm events (Fabricius et al. 2008). Compared to
the exposed offshore locations, the 2500 islands
along the inshore Kimberley would afford greater
opportunities for protection.

The offshore and inshore habitats also differed
in the level of suspended sediment. The offshore

Cassini Island
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Rowley Shoals

Mean percentage hard coral cover at the six reefs where multiple stations were surveyed.

environment is best described as oligotrophic
(Wilson 2013). While inshore monsoonal rainfall
causes flooding of approximately 30 major
rivers that drain into the shallow nearshore
marine environment of the Sahul Shelf. During
the wet season the large river systems of the
region flood, transporting huge quantities of
terrigenous sediment containing a high mineral
clay composition into the nearshore environments
(Gingele et al. 2001). These fine clay sediments are
constantly mobilised, resuspended and deposited
by tide-driven currents and strong prevailing
winds across the reefs. Hence, it is not surprising
that we found rock and silt to be the dominant
abiotic groups inshore.

Traditional ecological theory asserts that
photosynthetic animals prefer clear oligotrophic
conditions and that sediment detrimentally affects
the metabolism, reproductive behaviour and
growth of benthic invertebrates such as corals (Loya
1976; Stafford-Smith and Ormond 1992; Reigl and
Branch 1995; Gilmour 1999; Fabricius and Wolanski
2000; Humanes et al. 2017). However, more recently
it has been hypothesised that in areas where there
are naturally high levels of suspended sediments,
such as the inshore Kimberley (Richards et al.
2015) and Great Barrier Reef (GBR; Morgan et al.
2017), suspended solids may protect photosynthetic
benthos from solar radiation by lowering the
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intensity of down welling irradiance (Anthony et
al. 2007; Devlin et al. 2008). Furthermore, the high
load of organic nutrients may actually enhance the
opportunities for heterotrophic feeding (Anthony
2000; Anthony and Fabricius 2000) and our finding
of high levels of both hard coral and sponge cover
in the inshore subtidal zone supports this premise
for these taxa.

Our analysis supports the findings of others
(Hooper 1994; Fromont and Vanderklift 2009) that
the northern and southern offshore subregions
are distinct from each other and should be treated
as separate management units. In the southern
subregion (Rowley Shoals), the mean level of hard
coral cover (2792% =+ 2.52%) was higher than in
the northern subregion (Ashmore and Hibernia
Reefs, Browse Island, 17.26% =+ 5.57%). However,
the northern subregion was uniquely characterised
by higher levels of cover of a variety of other taxa,
including soft corals, Halimeda spp., seagrasses
and other invertebrates (molluscs, anemones etc.).
That soft corals are a prominent part of the reef
community at Ashmore, Hibernia and Cartier Reefs
has been alluded to in the past (Kospartov et al.
2006; Richards et al. 2009; Bryce and Sampey 2014).
Similarly, based on historical records Ashmore and
Hibernia Reefs appear to host far greater molluscan
diversity than the Rowley Shoals (Willan et al.
2014). Hence, while Rowley Shoals is an important
refuge for hard corals, Ashmore and surrounding
reefs are important refuges for a wider diversity of
benthic taxa.

Ashmore Reef is a Commonwealth Marine
Reserve and the level of benthic cover at this
location has been intermittently monitored over
the last decade (Kospartov et al. 2006; Richards et
al. 2009; Heyward et al. 2012) facilitating temporal
comparisons. The mean level of hard coral cover
recorded at the 22 stations surveyed at Ashmore
Reef in 2013 (14.9% =+ 2.12%, excluding Hibernia
and Browse Island) is lower than the mean level
of coral cover recorded at eight sites in 2009 (29.4%
+ 1.83%), but higher than the level recorded at
the same sites in 2005 (10.2% =+ 1.46%) (Ceccarelli
et al. 2011). This level of hard coral cover is also
lower than the levels recorded at the same eight
sites in 2010 and 2011 (24.36% — 26.23%, Heyward
et al. 2012). For soft corals, the mean level of soft
coral cover recorded in 2013 (4.44% =+ 0.98%) is
approximately half that recorded in 2009 (8.3% =+
1.4%) and similar to the level recorded in 2005 (4.5%
+ 0.63%) (Ceccarelli et al. 2011). It is also lower than
the levels recorded in 2010 and 2011 (6.86% +6.54%,
Heyward et al. 2012). Whether the observed decline
in hard and soft coral cover between 2011 and 2013
represents biologically meaningful region wide

declines or artifacts of sampling in different habitat
zones (intertidal and 12 m in this survey versus
3-5 m and 8-10 m in Ceccarelli and Heyward) or
methodological inconsistencies cannot be resolved
at this point.

When comparing the offshore regions, the higher
level of coral cover recorded at the Rowley Shoals
is likely to relate Ashmore Reef experiencing
at least two historical bleaching events (2003
and 2010, see Ceccarelli et al. 2012, Heyward et
al. 2012), whilst only minor coral bleaching has
been observed at the Rowley Shoals. The factors
underpinning the observed resilience of the
Rowley Shoals to previous thermal stress events
are not well understood, but a recent comparative
study of environmental conditions on south-east
Indian Ocean reefs shows the Rowley Shoals is
exposed to a wider range of temperature variation
than the northern atolls (see Zinke et al. 2018)
and this may in part explain the greater inherent
thermo-tolerance of the Rowley Shoals system.
Alternatively, favorable local conditions at the time
of these events (cooler sea surface temperatures and
increased wind and cloud) may have mitigated the
stress.

Inshore, there were some interesting patterns
of subregional differentiation. The Inshore
Central was significantly different from both
the Inshore North and Inshore South, yet these
latter subregions were not significantly different
from each other. The disparity is largely driven
by latitudinal variation in the composition of
floral communities, whose structure shifted from
macroalgal domination in the north and south to
turf algae and coralline algal domination in the
Inshore Central. There are numerous possible
explanations for this pattern. High macroalgae
cover on tropical reefs can be indicative of low
herbivore abundance (Przeslawski 2008; Hughes
et al. 2010). However, herbivorous fishes are
generally not targeted in the regions recreational
or commercial fisheries, and the level of fishing for
carnivorous fishes in the Kimberley is considered
to be relatively low, hence overfishing is not a likely
explanation for the abundance of macroalgae.
Given the Kimberley waters have been described
as some of the least productive waters for finfish
in the world (Molony et al. 2011), it is possible there
are naturally low levels of herbivore abundance
or alternatively, high algal cover may be a natural
phenomenon, but further research should be
undertaken to substantiate this.

The higher level of macroalgal cover in the
Inshore North and Inshore South may also reflect
differing nutrient levels. Macroalgae such as
Sargassum use particulate matter as a nutrient
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source (Schaffelke 1999); hence the finding of a
higher level of macroalgal cover may indicate
higher nutrient levels in those subregions (Huisman
and Sampey 2014). However, further data are
needed to test that hypothesis. Nevertheless, a high
level of macroalgal cover may not be restrictive
to the corals growing in the Kimberley because
distinct patterns of zonation were apparent across
the intertidal platforms (unpublished data). In
the Kimberley, there is a tendency for macroalgae
to dominate the upper littoral and hard corals to
dominate the lower littoral and reef crest, hence
both these important functional groups coexist,
albeit partitioned, on a single narrow fringing-reef
platform.

Coralline algae are commonly associated with
high wave energy reef crest locations, and as
expected reached the greatest levels of abundance
offshore, but coralline algal terraces are also an
important feature of the inshore reefs (Wilson and
Blake 2011; Richards and O’Leary 2015; Solihuddin
et al. 2015), with the highest level of coralline algae
cover recorded in the Inshore Central. This may
be another indicator that nutrient levels are lower
in the central Kimberley, but could also be a result
of other physical (e.g. temperature, light, currents,
substrate); chemical (e.g. water chemistry, dissolved
salts, gases), or biological factors (e.g. competition
and grazing pressure) (Wray 2009). Overall,
marine flora forms the foundation of the inshore
Kimberley marine food web and play essential
functional roles, such as habitat provision and reef
consolidation (Huisman and Sampey 2014).

Region wide, the mean level of hard coral cover
was 23.3% (31% in the subtidal and 14% in the
intertidal zone), but the percent cover of hard coral
varied dramatically between stations (e.g. 76%
was recorded at Cassini Island station 41/K10),
and was dependent on tidal zonation (intertidal or
subtidal), cross shelf placement (inshore or offshore)
and the subregion (latitude). The regional mean
reported here is slightly higher than the whole-of-
reef average recorded on the GBR in 2004 (21.7%,
Sweatman et al. 2011), but lower than the average
of 27%-33% reported in Osborne et al. (2011).
However, it is very similar to the regional average
reported from the entire Indo-Pacific in 2003 (22.1%,
Bruno and Selig 2007). Considering the Kimberley
is a minimally impacted tropical reef ecosystem,
the most relevant comparison is to the northern
GBR. Based on surveys conducted from 1985-2012
the mean level of hard coral cover in the northern
GBR was ~35% (De’ath et al. 2014). However, this
has dramatically declined following the 20162017
bleaching events with the latest estimates of hard
coral cover in the two most northerly sectors of the
GBR to be 10-20% (AIMS 2017 a,b).

Z. RICHARDS, M. BRYCE AND C. BRYCE

It is worth noting the regional estimate of
hard coral cover presented here is likely to be an
underestimate because, unlike the sites chosen for
long-term monitoring of the GBR, a variety of non-
coral habitat was surveyed in the present study.
These Kimberley surveys were undertaken as part
of a wider multi-taxon biodiversity study, which
necessitated surveying a diversity of habitat types.
Furthermore, habitats where corals are known
to dominate, such as the reef crest and upper
slope, were not surveyed in this study and neither
were numerous intertidal sites in the Bonaparte
Archipelago and Buccaneer Archipelagos, which
are renowned as hotspots for the diversity and
abundance of hard corals (Wilson et al. 2011;
Richards et al. 2015).

Previously there has been a shortage of
quantitative baseline data concerning benthic
communities for Kimberley marine environments
(see Waples 2007). This study characterises
benthic communities throughout the survey
area highlighting similarities and differences in
benthic composition across various habitat types
and geographic locations. Although this dataset
provides insight into the most dominant biotic
and abiotic benthos occurring at each location, the
stations were typically located either intertidally
or at approximately 12 m depth and only serve as
representatives of these habitats and zones. Some
well-known seagrass habitats were not surveyed,
for example the Sunday Island group (Walker 1995;
Kendrick et al. 2016). Neither were other locations
where coralline algae are known to dominate (Jalan
Island, Richards and O’Leary 2015; Solihuddin et
al. 2016), deeper reef zones where soft corals are
likely to occur in greater abundance (Bryce et al.
2014), nearshore reefs, or reefs to the north of Cape
Bougainville or south of Bathurst Island.

Similarly, it should be noted that this dataset
does not represent seasonal change, as all surveys
were conducted during September and October of
each survey year (2009-2014). Macro-algae cover
can fluctuate seasonally and so caution should be
exercised when comparing algal percent cover from
different seasons. Furthermore, coral communities
are disturbance driven (e.g. cyclones and bleaching)
and so coral populations are often in flux. As such,
a single snapshot of coral cover is an inadequate
representation of the health or resilience of a
particular reef (Smith et al. 2016). Nevertheless, the
data presented here offers a quantitative glimpse
of the most common taxa and forms a critical
reference dataset for future monitoring. Ongoing
monitoring of reefs and across habitat zones is
required to provide accurate health assessments of
these communities.
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Overall we provide data to substantiate that
the intertidal and subtidal habitats of the inshore
and offshore Kimberley are significant parts of
the Australian reefscape. Parts of the offshore reef
ecosystems examined in this study receive either
federal (Ashmore and Cartier National Marine
Reserve) or state (Rowley Shoals Marine Protected
Area) protection and parts of our inshore survey
area fall within the Larang Garam (Camden Sound)
Protected Area and North Kimberley Marine Park.
Our data indicate that managing the subregions
as defined here as discrete units is warranted.
Given the Inshore Central and Inshore Northern
subregions have distinctive biotic and abiotic
characters, and that both of these subregions fall
within the North Kimberley Marine Park planning
area, further spatial planning may be warranted to
ensure the diversity of benthic communities within
this expansive management area is adequately
represented within protected areas.
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