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Abstract - Richness and shell size distributions of land snail faunas were
analyzed from 838 sites sampled within ten geographic regions spread across
a 2,300 x 2,800 km area in eastern North America, extending from tundra and
taiga to tallgrass prairie, mixed boreal-hardwood, deciduous and evergreen
subtropical forest. A total of 410,667 individuals from 166 taxa were
encountered. These data documented: (1) Eastern North American land snail
communities are frequently marked by high levels of syntopic species
richness. Over 52% of sites exceeded 12 co-occurring taxa, with almost 10%
supporting more than 24 taxa. Two percent of sites harbored 30 or more taxa.
(2) Site richness was inversely related to latitude, with an almost 5-fold
decrease towards the north. (3) Site richness was least in oligotrophic and
grassland habitats, and greatest on base-rich bedrock outcrops. (4)
Communities are dominated by taxa with maximum shell dimensions of <5
mm, representing almost 75% of species and over 80% of individuals within
sites in most regions. Taxa with shells 10 mm or larger never constituted
more than 16% of taxa and 7% of individuals in average sites. (5) Northern
communities harbored a more narrow range of size distributions, with both
the largest (10+ mm) and smallest «2 mm) size classes becoming less
frequent. (6) Medium and large shelled taxa were most frequent in outcrop
and lowland forest habitats, while minute species were most frequent in
grasslands. (7) The contribution of a and y diversity to regional richness was
greatest in the north, with 41% of taxa being found on average in Churchill,
Manitoba sites. However, the contribution of ~ diversity peaked in the south.
These results suggest that the latitudinal gradient in land snail richness in
eastern North America is related not only to an increase in the number of
niches and guilds towards the south, but also to increased niche overlap
towards the north.
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INTRODUCTION
One of the most ubiquitous patterns in

community ecology is the increase of species
richness per unit area with decreasing latitude. This
trend has been noted for groups as varied as trees,
birds, mammals, arthropods, and planktonic
foraminifera (Whittaker, 1975; Brown and Gibson,
1983), and has been related to habitat favorability
and productivity, number of potential niches, niche
breadth, overlap, and the rate of geographic
turnover (Whittaker, 1975; Shrnida and Ellner, 1984;
Ricklefs, 1990; Terborgh, 1992).
Such large scale diversity patterns tend to be less

well documented for invertebrates, especially those
that spend much of their life in the soil.
Investigation of some soil groups (e.g. bacteria,
fungi, nematodes, and micro-arthropods) is further
complicated because only a small fraction of their
species pools have been taxonomically described
(Behan-Pelletier and Newton, 1999).

Terrestrial gastropods serve as an important
exception, being both taxonomically diverse and
well described. Over 35,000 species are believed to
exist globally (Barker, 2001), with roughly 3,600
occurring in Europe, 1,600 in Australia, 1,400 in
New Zealand, and 1,200 in North America (Pilsbry,
1948; Bank et al., 1998; Barker and Mayhill, 1999).
Although alpha-level taxonomy remains poorly
known in places such as east Africa, Madagascar
(e.g. Emberton et al., 1996, 1997), New Zealand
(Barker, 2004) and eastern Australia (Stanisic and
Ponder, 2004), the description of new species has
slowed in western Europe and eastern North
America to less than 1% of the total fauna per
decade. These rates are comparable to (or less than)
more conspicuous groups such as vascular plants.
In addition, taxa within a single community may
span 5-{5 orders of magnitude in volume (minimum
= 1 mm3) and represent a variety of trophic levels,
including polyphagous detritivores, herbivores,
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omnivores,andcarnivores(KerneyandCameron,
1979;BurchandPearce,1990).

Terrestrial gastropodsmay thusserveasan
importantmodel groupforinvestigationof
mechanisms underlyinglarge-scaleinvertebrate
diversity.Thefollowingstudydocumentslandsnail
communityrichnessandshell-sizedistribution
acrosseasternandcentralNorth America. These
datawill beusedtodetermineifsignificant
diversity patterns exist, and thepossible
mechanismsunderlyingthem.Specificquestionsto
beaddressedincludewhether: (1)richnessvaries
acrossgeographicregionsandhabitats;(2)thesize
distributionoftaxaandindividualsvariesacross
regionsand habitats; and (3) therelative
contributionsofa.,~ andydiversity(sensuCody,
1986)varybetweenregionsandhabitats.

METHODS

StudyRegion
Land snailfaunaswere analyzedwithin ten

geographicregionslocatedina2,300x2,800km
areacenteredoneast-centralNorthAmerica,witha
maximum extentof3,040kmoccurringbetween
Georgetown, SouthCarolina andCape Merry,
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Churchill, Manitoba (Figure1).Thestudyarea
encompassespartsoftheInteriorandNorthern
provincesoftheeasternNorthAmericanmolluscan
division(BurchandPearce,1990).Twohundred
andseventeentaxaareknownfromthisarea(Table
I),orapproximately40%oftheeasternNorth
American fauna(Hubricht,1985). Dominant
vegetationvariesfromtundraandtaigainthenorth
totallgrassprairieinthewest tomixed boreal-
hardwood,deciduousandevergreensubtropical
forestintheeastandsouth(BarbourandBillings,
1988).

StudySites
Atotalof838sites(Table1)weresurveyed.The

numberperregionvariedfrom215inthewestern
Niagaraescarpmentto11inthenorthernOzarks.
Fivemajor habitattypeswere surveyed:rock
outcrop(318sites),uplandforest(186),lowland
forest(160),uplandgrassland(64),andlowland
grassland(110).Except fortheOzarks, where
samplingwas limitedtocalcareousbedrock
outcropsanduplandgrasslands,anattemptwas
made tosamplerepresentativeexamplesofeach
habitattypeknowntoexistwithin eachregion.
While certainhabitattypeswereabsentfromcertain
regions(e.g.norockoutcropsexistwithin
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Figure1 Map ofeasternNorthAmericashowinglocationofthetensampleregionsand838samplesites
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Table] Regional dataset overview: sample sites

Region Habitat Types Total % Oligotrophic
Rock Upland Lowland Upland Lowland

Outcrop Forest Forest Grassland Grassland

Carolina Coast 7 11 14 2 4 38 82%
Ozarks 9 0 0 2 0 11 0%
New England 17 16 20 3 9 65 31%
Upper Mississippi 71 8 0 25 15 119 3%
Eastern Niagara 38 7 14 1 9 69 6%
Western Niagara 98 39 42 9 27 215 1%
Lake Superior highlands 72 1 4 5 0 82 27%
Northwestern Minnesota 0 89 54 14 35 192 8%
Southern Manitoba 3 10 7 0 4 24 17%
Churchill 0 3 2 7 11 23 9%
Total 315 184 157 68 114 838 13%

northwestern Minnesota), a minimum of four were
sampled from each. Rock outcrop habitats included
carbonate, sandstone, shale, igneous, and quartzite
cliffs, lakeshore carbonate ledges, and algific talus
slopes. Upland forest habitats included oak-
hickory, maple-basswood, hemlock-birch, balsam-
white spruce, paper birch, aspen, and pine Uack,
loblolly, pond, red, southern or white) forest or
savanna plus rocky forests and those along
lakeshores. Lowland forest habitats included black
ash, tamarack, black spruce, northern and Atlantic
white cedar stands plus floodplains, shrub-carr, bay
forests, swamp forests, medium and tall pocosins.
Upland grassland habitats included mesic, xeric,
and sand prairies, bedrock glades, alvars, igneous
rock shorelines, old fields, and upland tundra.
Lowland grassland habitats included wet prairies,
sedge meadows, fens, calcareous meadows, cobble
beaches, low pocosins, acid peatlands, and low
tundra. Descriptions for most of these may be found
in Nekola (1999). While these habitat groupings
differ from those typically used in European studies
(e.g. wooded vs. open carbonate rock outcrops,
lowland fens, upland flushes; Kerney and Cameron,
1979), they capture the major compositional trends
present in eastern North American land snail
communities (Nekola, 2003).
Although most sampled sites possessed high

base-status, oligotrophic sites (granite, quartzite,
rhyolite, and most shale and sandstone outcrops,
pocosins, acid peatlands, sand dunes, pine forest
and savanna) were sampled from all the habitat
groups and regions except the Ozarks. The
proportion of such habitats was greatest in coastal
Carolina (82'10), New England (31°A1), the Lake
Superior highlands and southern Manitoba
(17%).

Field Methods
The latitude-longitude position of each site was

determined using either USGS 7.5 minute
topographic maps or a hand-held GPS.

Documentation of terrestrial snail faunas (excluding
slugs) from representative 100-1,000 m 2 areas
within sites was accomplished by hand collection of
larger shells and litter sampling for smaller taxa.
Soil litter sampling was primarily used as it
provides the most complete assessment of site
faunas (Oggier et ai., 1998; Cameron and Pokryszko,
2005). As suggested by Emberton et al. (1996), litter
collections were made at places of high micro-
mollusc density, with a constant volume of soil litter
(approximately 4 liters) being gathered from each
site. For woodlands; sampling was concentrated: (1)
in areas of deep litter accumulation, (2) along the
base of rocks or trees, and I or (3) on soil covered
bedrock ledges. For grasslands, samples consisted
of: (1) small blocks (ca. 125 cm3) of turf; and I or (2)
loose soil and leaf litter accumulations under or
adjacent to shrubs, cobbles, boulders, andlor
hummocks. A few Churchill (16) and Carolina coast
(9) sites were sampled via field sieving of leaf litter
through a 3 mm mesh into a 0.75 mm mesh.
Approximately 125 cc of processed litter was
collected from each of these sites. This technique
was used as it proved a more efficient way to gather
individuals in habitats that lacked larger taxa.

Laboratory Procedures
Samples were slowly and completely dried in

either a low-temperature soil oven (ca. 8o-95°C) or
in full sun in a greenhouse. Dried samples were
then soaked in water for 3--24 hours, and subjected
to careful but vigorous water disaggregation
through a standard sieve series (ASTME 3/8" (9.5
mm), #10 (2.0 mm), #20 (0.85), and #40 (0.425 mm)
mesh screens). Sieved sample fractions were dried
and passed again through the same sieve series.
These dry, resorted fractions were hand picked
against a neutral-brown background. All shells and
shell fragments were removed. All identifiable
shells from each site were assigned to species (or
subspecies) using the author's reference collection
and the Hubricht Collection at the Field Museum of
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NaturalHistory(FMNH),withthetotalnumberof
shellsperspeciespersitebeingrecorded.Thetotal
numberofunassignable,immatureindividualswas
alsocounted.Nomenclaturegenerallyfollowsthat
ofHubricht(1985),withupdatesandcorrectionsby
Nekola(2004).
Eachsitewasassignedtooneoffiverichness
classes(1-4;5-9;10-19;20-29;and30-39taxa).
Completeregionalfaunalistswerecreatedby
combiningdistributionaldatafromthisstudywith
thosepresentedinPilsbry(1948)andHubricht
(1985).
Approximateadultshellheightandwidthfor
eachencounteredtaxonwasdeterminedusingthe
author'sreferencecollectioninconjunctionwith
datapresentedinPilsbry(1948).Following
Emberton(1995),eachtaxonwasplacedintooneof
fivesizeclassesbasedonmaximum shell
dimension:micro«2mm), minute (2-4.9mm),
small(5-9.9mm),medium(10-19.9mm)andlarge
(>20mm).Becauseregionalmetacommunityfaunas
willlikelyharboragreaterfrequencyofendemic
and/orlowvagilitytaxaascomparedtositefaunas
(Hubbell2001),thefrequencyofsizeclasseswas
calculatedseparatelyforgeographicregionsand
samplesites.Additionally, thefrequencyof
individualswithineachsizeclasswascalculated
foreachsite.

StatisticalProcedures
Thepotentialnumberoftaxamissedwithinsites
andregionswas calculatedusingtheChao
estimator(Chao,1984),whichconsiderstherelative
numberofspeciesinasamplerepresentedbysingle
individualscomparedtothenumberofspecies
representedbytwoindividuals.Thefrequencyof
siteswithnoestimatedmissedtaxa(Chao<O.5orno
singletonordoubletonspecies)wasdetermined
fromeachregion.Siterichnesswasanalyzedusing
I-wayANOVAs,withcentraltendenciesbeing
graphicallyrepresentedviaboxplots.Log-linear
modeling wasusedtoanalyzedifferencesin

Table2 Regionaldatasetoverview:samplesubjects
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richnessclassfrequencybetweenregionsas
predictedvaluesweresparse«5)inmorethanone-
fifthofcells(Zar,1984).Differencesinsizeclass
frequencybetweenregionalfaunaswereanalyzed
usinglog-linearmodeling. Sizeclassfrequency
differences between sitefaunasandtotal
individualsweretestedusingtwo-wayANOVA,
withregion/habitatandsizeclassbeingusedas
independentvariables.Onlythesignificanceofthe
region/habitatxsizeclassinteractiontermwas
considered.Significancewithineachsizeclasswas
documentedusingI-wayANOVA. ABonferroni
correctionwas usedtoadjustthesignificance
thresholdtop=O.Ol.
Therelativecontributionofa.,~ andydiversityto
regionalrichness(e.g.Loreau,2000;Veechetal.,
2002)wascalculatedforeachsite.a.diversitywas
settositerichness.~ diversitywascalculatedasthe
numberofregionaltaxanotfoundatthatsitethat
occuronlywithindifferenthabitatsintheregion.y
diversitywascalculatedasthenumberofregional
taxanotfoundatthatsitethatoccuronlywithinthe
samehabitattypeintheregion.Thenumberof
regionaltaxanotfoundatthatsitethatoccurin
boththesameanddifferenthabitatsintheregion
~ wasalsodetermined.Comparisonsbetween
different regionswere made possible via
standardizationbyrespectiveregionalrichness.
One-way ANOVA was used toestimate
significanceforeachdiversitycomponentbetween
thesampledregionsandhabitats.A Bonferroni
correctionwas usedtoadjustthesignificance
thresholdtop=0.0125.

RESULTS

Datasetoverview
410,667individualsfrom166taxawereobserved
(Table2).Encounteredtaxaperregionvariedfrom
87intheupperMississippivalleyto14atChurchill.
Identifiedindividualsperregionvariedfrom
142,305innorthwesternMinnesota to5023inthe

Region SampleSubjects ChaoEstimator
No.taxa No.taxa No. No. No. Region %sites<0.5
reported observed individuals singles doubles

Carolinacoast 102 62 9,297 3 2 2.25 45%
Ozarks 98 54 12,072 2 2 1.00 100%
NewEngland 85 67 19,190 2 1 2.00 66%
UpperMississippi 94 87 100,901 2 2 1.00 74%
EasternNiagara 101 79 24,186 1 2 0.25 58%
WesternNiagara 93 83 78,087 2 1 2.00 56%
LakeSuperiorhighlands 56 44 5,023 6 1 18.00 22%
NorthwesternMinnesota 59 59 142,305 1 5 0.10 77%
SouthernManitoba 45 39 10,314 0 1 0.00 88%
Churchill 14 14 9,302 0 0 0.00 91%
Total 216 166 410,677 2 2 1.00 60%
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Table 3 Site richness class frequency (and abundance) within each geographic region.

Region Richness Class
1-4 taxa 5-9 taxa 10-19 taxa 20-29 taxa 30+ taxa

Carolina Coast 21.1 ')la (8) 42.1 0l<} (16) 26.3% (10) 7.9% (3) 2.6% (1)
Ozarks 0%(0) 0%(0) 18.2% (2) 72.7% (8) 9.1%(1)
New England 6.2% (4) 23.1% (15) 52.3% (34) 16.9% (11) 1.5% (1)
Upper Mississippi O'X} (0) 3.4% (4) 42.9% (51) 47.1% (56) 6.7% (8)
Eastern Niagara 2.9% (2) 11.6% (8) 55.1% (38) 27.5% (19) 2.9% (2)
Western Niagara 5.6% (12) 10.7% (23) 52.6% (113) 30.7% (66) 0.5% (1)
Lake Superior highlands 11.0% (9) 39.0% (32) 50.0% (41) 0%(0) 0% (0)
Northwestern Minnesota 1.0% (2) 7.8% (15) 73.4% (141) 17.7% (34) 0%(0)
Southern Manitoba 4.2% (1) 33.3% (8) 58.3% (14) 4.2% (1) 0%(0)
Churchill 39.1%(9) 47.8% (11) 13.0% (3) 0% (0) 0% (0)
Total 5.4')la (47) 15.8% (132) 53.5% (447) 23.6% (198) 1.7% (14)

Lake Superior highlands. The most abundant
species was Carychium exiguum with 35,312 shells.
Only two taxa (Mesodon pergraptus and Polygyra
pustula) were represented by single individuals.
Maximum site richness of 39 taxa was observed at
Williams Creek 5 in northeastern Iowa. Only a
single site (the tundra summit of Mt. Mansfield,
Vermont) harbored no land snails. While
approximately 20% of sites harbored less than 10
taxa, over 53% contained between 10-19, and 23%
contained between 20-29 taxa. Almost 2% of sites
contained 30 or more taxa (Table 3).
Chao estimators for regional metacommunities

generally ranged from 0-2.25, with Lake Superior
highlands serving as an outlier (Chao=18). This
number is assumed to stem from random error and
not inadequate sampling, as data were gathered
from 82 sites spread across a 500 km extent, and
included over 5,000 individuals. Additionally, the
Chao-estimated richness for this dataset (62 taxa)
greatly exceeds the total number reported from the
region (56; Table 2). Site-specific Chao estimates
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Figure 2 Box-plot diagram of variation in site richness

between the ten geographic regions. p and re
values calculated via a I-way ANOVA.

indicated that fully 60% captured all species; within
regions these frequencies ranged from 22% in the
Lake Superior highlands to 100% in the northern
Ozarks. Additionally, Chao estimates were not
calculated from 152 sites (20%), as singleton species
were present while doubletons were absent.

Variation in site richness
Site richness significantly varied (p<0.0005; Figure

2), with southern regions having median values
exceeding 20 while northern regions had median
values of 10 or less. The five site richness classes
also significantly varied (p<0.000005) between
geographic regions (Table 3). Churchill and coastal
Carolina were similar (p=0.15), being dominated by
sites harboring less than 10 taxa. The Lake Superior
highlands and southern Manitoba were similar
(p=0.347), having approximately equal numbers of
sites possessing 1-9 or 10-19 taxa. Northwestern
Minnesota was statistically distinct (p=0.00008 vs.
New England, eastern Niagara and western
Niagara), having less than 10% of sites harboring
less than 10 taxa, 73% of sites harboring 10-19, and
almost 18% harboring 20-29 taxa. The New
England, eastern Niagara and western Niagara
regions were similar (p=0.128), having
approximately half of sites harboring 10-19 taxa,
and 17-31% of sites 20-29 taxa. From 0.5-3% of sites
in these regions supported 30 or more taxa. The
northern Ozarks and upper Mississippi valley
regions were also similar (p=0.194), having
essentially no sites harboring fewer than 10 taxa,
and approximately 50% harboring more than 20.
Seven to nine percent of sites in these regions
harbored 30 or more taxa.
Significant variation (p<0.0005) was also noted

between the five major habitat groups (Figure 3),
with bedrock outcrops having a median score of 18,
upland and lowland forest sites of 13, lowland
grasslands of 12, and upland grasslands of 11.
Additionally, base-rich sites were found to harbor
almost twice as many species, on average, as
oligotrophic sites (p<0.OO05; Figure 4). Significant
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Figure3 Box-plotdiagramofvariationinsiterichness

betweenthefivemajorhabitattypes.pandr2

valuescalculatedviaaI-wayANOVA.

depressionofrichnessinoligotrophicsiteswasalso
notedwithinallfivehabitatgroups(rockoutcrop,
p<O.OOO5;uplandforest,p<O.OO05;lowlandforest,
p<O.0005,uplandgrassland,p=O.006;lowland
grassland,p=O.OlO),andwithinmost ofthe
geographicregions(e.g.Carolinacoast,p<O.0005;

Figure4 Box-plotdiagramofvariationinsiterichness
betweenbase-richandoligotrophichabitats.p
andr2valuescalculatedviaaI-wayANOVA.

NewEngland,p<O.0005;northwesternMinnesota,
p<O.0005;westernNiagaraescarpment,p=O.005).
However,nosignificantdifferenceswerenoted
betweenthesehabitattypesintheLakeSuperior
highlands(p=O.747)andsouthernManitoba
(p=O.122).
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Variationofshellsizedistribution
Shellsizedistributionvariedsignificantly
(p=0.00004)amongthetenregionalfaunas(Figure
5).TheCarolinacoastandnorthernOzarksfaunas
aresimilar(p=0.32243)andrepresentedbyroughly
similarpercentagesofallfivesizeclasses.TheNew
England,upperMississippi valley,NewEngland,
easternNiagara, westernNiagara, LakeSuperior
highland,northwesternMinnesota, andsouthern
Manitoba regionsareallsimilar(p=0.39993),with
approximately ~ oftaxabeingmicro, 40-50'1'0
beingminute,and20%beingofsmallsize.Only5-

20'X,oftaxawereofmedium orlargesize.The
Churchillfaunaisstatisticallydistinct(p=0.OOO05)
byhaving85'/'0oftaxabeingofmicroorminute
size.Theproportionofregionalfaunasrepresented
bymicroorminutetaxaincreasedsteadilyfromthe
south(45%)tothenorth(85.7%),whilethenumber
ofmediumandlargetaxafell(35%to4%).

Thesizedistributionofsitefaunasvaried
significantlybetweenregions(p<0.OOO05;Figure6)
with eachsizeclassdemonstratingsignificant
(p<0.00005)differences.Theproportionofsmall
taxatendedtoincreasetowardsthenorth(14%to
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29%), while the number of medium and large taxa
fell (15% to 0%). Ozark and Churchill sites
demonstrated the lowest average frequency of
micro taxa «20%), while the Carolina coast, New
England, Lake Superior highlands, and southern
Manitoba had the highest (30-39%). Carolina coast
and southern Manitoba sites demonstrated the
lowest average frequency of minute taxa «40%),
with Churchill having the highest (70%). Churchill
sites demonstrated the lowest average frequency of
small taxa (5%), with southern Manitoba having the
highest (29%). Lake Superior highlands and

J.c. Nekola

southern Manitoba sites demonstrated the lowest
average frequency of medium taxa (0%), with the
Ozarks having the highest (8%). Churchill sites
demonstrated the lowest average frequency of large
taxa (0%) with the Ozarks again having the highest
(7%).
The size distribution of individuals also varied

significantly between regions (p<0.OOO05; Figure 6)
with each size class demonstrating significant
(p<0.OOOO5) differences. The proportion of micro
individuals tended to decrease towards the north
(59% to 23%), while the number of minute

V'J
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Size Class
Large
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= Small
• = Minute
• Micro

Size Class
Large

= Medium
= Small

• = Minute
• = Micro

Habitat Type
Figure 7 Average size class distributions for site faunas and site individuals across the five habitat types. Micro

species have a maximum shell dimension of <2mm; minute 2-4.9 mm; small 5-9.9 mm; medium 10-19.9 mm,
and large 20+ mm.
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individualsincreased(26°/<,to70%).Theproportion
ofsmall,medium andlargeindividualstendedto
begreatestinthemid-latitudes (34-24%).Churchill
sitesdemonstratedthelowestaveragefrequencyof
micro individuals(24%),while theCarolinacoast
had thehighest (59')1,,). Carolina coastsites
demonstratedthelowestaveragefrequencyof
minute individuals(26%),with Churchill having
thehighest(70%).Churchillsitesdemonstratedthe
lowestaveragefrequencyofsmallindividuals(3'10),
with theLake Superiorhighlandshavingthe
highest(32%).Lake Superiorhighlandsand
southernManitoba sitesdemonstratedthelowest
averagefrequencyofmedium individuals(0%),
withtheOzarkshavingthehighest(4°1<,).Churchill
sitesdemonstratedthelowestaveragefrequencyof
largetaxa(0'1,,)withtheeasternNiagarahavingthe
highest(6%).

The sizedistributionofsitefaunasvaried
significantlybetweenhabitattypes(p<0.00005;
Figure 7) with eachsizeclassdemonstrating
significant(p<0.00005)differences.Theproportion
ofmedium andlargetaxatendedtobemuch less
inuplandgrasslandsandlowlandforests«2%)as
comparedtotheremaininghabitats(4%-7%).
Lowlandgrasslandsitesdemonstratedthelowest
averagefrequencyofmicro taxa(16%),while
outcropsandlowlandforestshadthehighest
(>21%). Outcrop sitesdemonstratedthelowest
averagefrequencyofminute taxa(56%),with
uplandgrasslandshavingthehighest(68%).
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Upland grasslandsitesdemonstratedthelowest
averagefrequencyofsmalltaxa(12%),with
uplandforestshavingthehighest(18%).Upland
forestsitesdemonstrated thelowestaverage
frequencyofmedium taxa(0.7%),with lowland
grasslandshavingthehighest(4%).Upland
grasslandsitesdemonstratedthelowestaverage
frequencyoflargetaxa(0.4%)with outcrops
havingthehighest(5%).

Thesizedistributionofindividualsalsovaried
significantlybetweenhabitattypes(p<0.00005;
Figure7)with eachsizeclassdemonstrating
significant(p<0.OOO05)differences.Theproportion
ofsmallandlargeindividualstendedtobegreatest
inoutcropanduplandforesthabitats(>15%,and
>2%, respectively).Upland forestandlowland
grasslandsitesdemonstratedthelowestaverage
frequencyofmicro individuals«23%),while
lowlandforestshadthehighest(28%).Outcropsites
demonstratedthelowestaveragefrequencyof
minute individuals(54%),with bothgrassland
habitatshavingthehighest(66%).Uplandgrassland
sitesdemonstratedthelowestaveragefrequencyof
smallindividuals(7%),withuplandforestshaving
the highest (16%). Lowland forest sites
demonstratedthelowestaveragefrequencyof
medium individuals(0.08%),with lowland
grasslandshavingthehighest(3%).Upland
grasslandsitesdemonstratedthelowestaverage
frequencyoflargeindividuals(0.08%)with
outcropshavingthehighest(3%).
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diversitytoregionalrichness,66'1'0ofy,and15%of
~ Levelsofpureydiversity(thenumberoftaxa
foundonlyinothersitesofthesamehabitattype)
inrockoutcropswas18%,almosttriplethatforall
otherhabitats.Thecontributionof~ diversityto
regionalrichnesswasgreatestingrassland(>40%)
andleastinoutcropsanduplandforests
(approximately25%).

RichnessPatterns
EasternNorthAmericanlandsnailcommunities
arefrequentlymarkedbyhighlevelsofsyntopic
speciesrichnessatthe0.1hascale.Onlyonthe
CarolinacoastandatChurchilldidamajorityof
sitessupportfewerthan10taxa.Oftheremaining
regionsonlytheLakeSuperiorhighlandsand
southernManitobademonstratedasignificantlack
ofsitessupporting20ormoretaxa.Fortheupper
MississippivalleyandOzarks,themajorityofsites
reachedthisrichnesslevel,withessentiallynosites
supportingfewerthan10taxa.Sitessupporting30
ormoretaxa,whichapproachtherichestAustralia,
westernEurope,tropicalAfrica,andNewZealand
sites(Schmid,1966;Tattersfield,1996;Stanisic,
1997;deWinterandGittenberger,1998;Barkerand

Variationintherelativecontributionof(X,~ and
'Ydiversity
Significantvariation(p<0.OO05)wasnotedinthe
contributionof(x,~ 'Y,and~ diversitytoregional
richnessbetweenthegeographicregions(Figure8).
Geographic regionexplained35%ofobserved
variationinthecontributionof(Xdiversity,19%of
~ 50%ofy,and65%of~ Theproportionofthe
regionalfaunacapturedbyanaveragesite
positivelyvariedwithlatitude,increasingfrom7%
ontheCarolinacoastto>40%inChurchill.Broadly-
definedydiversity ~ orallotherspeciesfound
inothersitesofthesamehabitattypewithinthe
region)alsotendedtoincreasewithlatitude,
representingapproximately20%oftheregional
faunaintheOzarksandCarolinacoasttomorethan
50%oftheregionalfaunainnorthwestern
Minnesota, theLakeSuperiorhighlands,and
westernNiagara.Thecontributionof~ diversityto
regionalrichnessdecreasedwithlatitudefrom
approximately70%ontheCarolinacoastto20%in
northwestMinnesotaandChurchill.
Thecontributionof(Xtoregionaldiversity(ca.
20%)didnotsignificantlyvary(p=O.054)between
habitattypes(Figure9).However,significant
variation(p<0.OOO5)wasnotedinthecontribution
of~ y,and~ diversity.Habitattypeexplained
44%ofobservedvariationinthecontributionof~
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Mayhill, 1999;Cameron,2004,StanisicandPonder,
2004),were recordedfromthesixmost southern
regions.

The assertionbySolemandClimo (1985)that
continentallandsnailcommunityrichnessrarely
exceeds12canthusbeeasilydisproved,asover
52%,ofallsites(438),andupto ~ withinagiven

regionexceededthisthreshold.Even thoughthe
Churchill regionlackedsuchsites,12outof14
regionaltaxawereobservedco-occurringonsingle
sites.Additionally,9.7%(81)sites(fromallregions
but theLake Superior highlands, southern
Manitoba, andChurchill)equaledorexceeded24
co-occurringtaxa,abenchmarkusedbyTattersfield
(1996)toidentifysitesof globalmolluscan
conservationimportance.

As a5-folddecreaseinsiterichnesswas noted
fromthesouth(ca.25)tothenorth(ca.5),the
easternNorthAmericanlandsnailfaunaexhibitsa
latitudinalrichnessgradientsimilartothoseseen
forbirdsandmammals inthesamelandscape
(BrownandGibson, 1983).This reductionin
richness,however,islikelymore rapidatsome
latitudesthanothers(Nekola,1999).

Soilbase-statusisanimportantconfounder,with
oligotrophicsiteshavingmuch lowerrichnessas
comparedtobase-richsites.Significantdifferences
remainedwhen comparisonswere limitedtothe
samehabitattype,andwere alsopresentwithin
most ofthegeographicregions.Itisthusnot
surprisingthattheCarolinacoast,which contains
thehighestproportionofoligotrophichabitats(bay
andpineforest,pine-wiregrasssavanna,pocosin
peatlands),had median siterichnesslevels
comparable to thatof tundra.Calcareous
woodlandsinthislandscape,however,wereasrich
asthoseintheOzarks.Otherlandscapeswithahigh
proportionofoligotrophichabitats(e.g.New
England,LakeSuperiorhighlands)haddepressed
siterichnesslevelsascomparedtootherregionsof
similarlatitudewith ahigherproportionof
nutrient-richsites(e.g.upperMississippi valley,
northwesternMinnesota). Thedecreaseoflandsnail
richnessonoligotrophicsiteshasbeenpreviously
demonstrated not only along theNiagara
escarpmentineasternNorth America (Nekola,
1999),butalsoinwestern andcentralEurope
(Ag6csy,1968; Bishop, 1976; Walden, 1981;
Gardenfors, 1992;Outeiro etal.,1993).Faunasof
oligotrophicsitesalsooftendemonstrateless
evennessinthedistributionoftheirspecies
abundances (Valovirta,1968; Cameron and
Pokryszko,2005).

Thedocumentationofrockoutcropsasharboring
therichestsitefaunas,anduplandgrasslandsthe
leasthasbeenpreviouslyshownwithin themore
limitedextentofthewesternGreatLakes(Nekola,
1999,2003). Eastern North America canthusbe
addedtothegrowinglistoflandscapes(Australia:
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Stanisic,1997;Borneo:Schilthuizen,2004;Germany:
Schmid,1966;Scotland:CameronandGreenwood,
1992;Sweden:Walden, 1981)inwhich calcareous
bedrockoutcropsserveasthemost important
reservoirsforlandsnailbiodiversity.

SizeDistributionPatterns
The eastern North American fauna is

characterized by minute and micro taxa,
particularlyatthesitescale,whereinmostregions
almost80%ofspeciesandover80%ofindividuals
areofthissize.Thecontributionofmedium and
largetaxatositefaunasandindividuals,however,
rarelyexceeds10%.Thissizeclassdistributionis
similartothatreportedfromtropicalAfrica (de
Winter andGittenberger, 1998)andNew Zealand
(BarkerandMayhill, 1999),andmay helpexplain
why theNorth American faunawas long
considereddepauperate(Solem,1984):unlike
Europeanfaunas(KerneyandCameron,1979),few
speciesandindividualswithin sitesarelarge
enoughtobeeasilyobservedinthefield.Eastern
NorthAmericanlandsnailfaunasthusrequireleaf
litterexaminationforaccuratecharacterizationof
communityanddiversitypatterns.

Southernregionalspeciespoolsalsoincludea
wider varietyofsizeclassesascomparedto
northernareas,withtheproportionofminute(and
toalesserextentmicro) speciesincreasingwith
latitude,whiletheproportionofbothmediumand
largetaxadecreased.Shellsizedistributionalso
variedatthesitescale,withtheproportionofmicro
individualsfallingalmost2/3with increasing
latitude(60% to20%) while minute taxa
demonstratedtheinversepattern(25%to70%).
Medium andlargetaxaneverconstitutedmorethan
16%ofsitefaunasand7%ofsiteindividuals,with
theseproportionstendingtobelargertowardsthe
south.

Thesedatasuggestagreatervarietyofnichesor
guildsarepresentinthesouth,ashasbeenshown
forbirds(Terborgh,1992).Additionally, asmicro
andminute taxaaremore frequentinsitevs.
regionalfaunasandmediumandlargetaxaareless,
smallertaxaappeartoeitherpossessbroaderniches
and/ormorecompletelysaturatepotentialhabitats
within alandscapeascomparedtotheirlarger
counterparts.The greaterapparentnumberof
niches/guildsinoutcropsitesislikelyrelatedto
high levels of small-scale environmental
heterogeneity(Larsonetal.,2000).

RelativeContributionsof(X,~ andydiversity
A significantlatitudinalgradientwas present,

with a. diversityrangingfrom9%ofregional
richnessontheCarolinacoastto41%inChurchill.
Broadly construedydiversityalsotendedto
increasewith latitudefromapproximately20%of
regionalrichnessontheCarolinacoastto38%in
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Churchill and 56% in northwestern Minnesota. As a
result, the contribution of narrowly defined ~

diversity fell from approximately 70% of regional
richness on the Carolina coast to approximately
20% in northwestern Minnesota and Churchill.
These data suggest that northern communities
either consist of species with wider ecological
niches or are more environmentally similar as
compared to those in the south. The increased
relative contribution of site richness to regional
richness in conjunction with decreased
compositional turnover between habitats towards
the north agrees with analyses from other taxa
groups (Ricklefs, 1990; Terborgh, 1992).
However, the decrease in y diversity contribution

towards the south was not expected. Generally, y
diversity rates tend to decrease towards the poles
(Nekola and White, 1999; Pokryszko and Cameron,
this volume). The observed pattern may be related to
species niche breadth. Large niche breadths in the
north would allow a greater percentage of the
regional fauna to colonize other examples of a given
habitat type, causing y diversity rates (as defined
for these analyses) to increase. However, narrower
niche breadths in the south would cause each
habitat type to harbor a smaller percentage of the
regional fauna, decreasing the fraction of the
remaining species pool that would be encountered
by searching other examples of the same habitat.
This explanation would also predict a greater
amount of pure y diversity in south, as more species
become habitat specialists. However, as this pattern
was not observed, the ultimate causes remain
ambiguous.
Significant differences between habitats were also

observed in the relative contribution of ~ and y
diversity to regional richness, with the latter being
highest in outcrop and upland forest and lowest in
grassland habitats. The importance of y diversity for
outcrop sites may be related to their isolated nature
in landscapes (Larson et al., 2000), which will
increase their rates of geographic compositional
turnover (Nekola and White, 1999).
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