A new troglomorphic species of *Austrochthonius* (Pseudoscorpiones: Chthoniidae) from Australia, with remarks on *Chthonius caecus*

Mark S. Harvey¹ and Lee G. Mould²

¹Department of Terrestrial Invertebrates, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.
E-mail: mark.harvey@museum.wa.gov.au

²Biota Environmental Sciences Pty Ltd, PO Box 176, North Perth, Western Australia 6906, Australia.
E-mail: lee@biota.net.au

Abstract - A new species of the chthoniid genus *Austrochthonius* Chamberlin is described and named from the Ludlow region of southern Western Australia. *Austrochthonius strigosus* sp. nov. exhibits some strong troglomorphic adaptations such as eye loss, elongate pedipalps and pallid colouration. *Chthonius caecus* Tullgren, 1909, a junior homonym, and its replacement name *Sathrochthonius tullgreni* Chamberlin, 1962, are transferred to *Austrochthonius*. A new replacement name, *Austrochthonius muchmorei*, is provided, as *A. tullgreni* is a junior secondary homonym of *A. tullgreni* (Beier, 1931).

INTRODUCTION

The chthoniid genus *Austrochthonius* possesses a typical Gondwanan distribution with eight species recorded from southern South America, three species from New Zealand, three species from Australia, one species from the Iles Crozet, and one species from South Africa (Harvey 1991a, 1991c; Judson 2001). The Australian fauna consist of *Austrochthonius australis* Hoff from southern Australia and two troglobitic species from caves in the Naracoorte region, South Australia (*A. cavicola* Beier) and Cape Range peninsula, Western Australia (*A. easti* Harvey). Kennedy (1990) presented a redescription of *A. australis* based upon large quantities of material from south-eastern Australia and noted that the Western Australian specimens attributed to *A. australis* by Beier (1966a) were sufficiently different from *A. australis* that they represented a distinct species. An additional species from the Kimberley region of Western Australia was reported by Harvey (1991b) but it currently remains undescribed.

Epigean members of *Austrochthonius* in Australia can be quite common in leaf litter and soil, but the troglobitic species are relatively uncommon with just a few specimens collected. Whilst considerable work is needed to unravel the systematic relationships of the genus within Australia, we are here describing a new troglomorphic species of the genus that has been recovered from subterranean sampling undertaken in the Ludlow area near Busselton, south-western Australia. Although only a single male has been collected, it is sufficiently distinct from all other species of the genus that we have prepared a systematic description to formally record this unusual species in the scientific literature. We also comment on the species first named as *Chthonius caecus* Tullgren from south-western Australia (Tullgren 1909) which has since been transferred to the genus *Sathrochthonius* Chamberlin and renamed *S. tullgreni* (Chamberlin, 1962). We suggest that this species is in fact a species of the genus *Austrochthonius*.

MATERIAL AND METHODS

The material utilized in the present study is lodged in the Western Australian Museum, Perth (WAM). Terminology and mensuration mostly follows Chamberlin (1931), with the exception of the nomenclature of the pedipalps, legs and with some minor modifications to the terminology of the trichobothria (Harvey 1992). In particular, it should be noted that the terminology for the trichobothria used by Harvey (1992) differs slightly from that used by other workers.

The specimen was examined by preparing a temporary slide mounts by immersing the specimen in 75% lactic acid at room temperature for several days, and mounting it on a microscope slide with 10 mm coverslips supported by small sections of 0.25 mm or 0.50 mm diameter nylon fishing line. It was examined with an Olympus BH-2 compound microscope and illustrated with the aid of a drawing tube. Measurements were taken at the highest possible magnification using an ocular
Castri 1968); species of occur in North America, whilst species of which the most prominent is the sub-basal species are found on all of the southern continents (Harvey 1996), as well as the lIes Crozet (Vitali-di Castri, 1976). The three Laurasian genera, *Malcalmachthanius*, *Francachthanius* and *Mexichthanius* are restricted to Chile (Beier 1964a; Vitali-di Castri, 1976); and the genera *Mairitchanius* and *Tyrannachthaniella* are endemic to New Zealand (Beier 1976). The three Laurasian genera, *Mundoachthanius*, *Malcolmochthanius* and *Mexichthanius* occur in North America, whilst species of *Mundoachthanius* have also been recorded from Europe and East Asia (summarized by Harvey 1991a), with subsequent species recently named by Kim and Hong (1994), Muchmore (1996), Sakayori (2002), Dashadamirov (2005) and Zaragoza and Harvey (2006). The relationships and status of some of these genera is doubtful and some rationalisation may be expected in the future.

SYSTEMATICS

Family Chthoniidae Daday

Subfamily Chthoniinae Daday

Genus Austrochthonius Chamberlin

Austrochthonius Chamberlin, 1929: 68. Type species: *Chthonius chilensis* Chamberlin, 1923, by original designation.

Remarks

Austrochthonius belongs to a group of genera characterised by the presence of coxal spines only on coxa II and that lack one or more enlarged spine-like setae on the interno-basal margin of the chelal hand. Defined in this way, this group currently includes nine genera: *Austrochthonius*, *Chilochthonius* Vitali-di Castri, *Drepanochthonius* Beier, *Francochthonius* Vitali-di Castri, *Maurichthonius* Chamberlin, *Malcolmochthonius* Benedict, *Mexichthonius* Muchmore, *Mundoachthonius* Chamberlin and *Tyrannachthoniella* Beier. The African genus *Congochthonius* Beier was also attributed by Muchmore (2001) to a group containing some of these genera but the affinities of this unusual genus appear to lie with *Sathrochthonius* Chamberlin and *Sathrochthoniella* Beier due to a small suite of morphological features of which the most prominent is the sub-basal position of trichobothria *ib* and *isin.*

Six genera of the *Austrochthonius* group occur in the southern hemisphere, whereas three genera occur in the northern hemisphere. *Austrochthonius* species are found on all of the southern continents (Harvey 1996), as well as the lIes Crozet (Vitali-di Castri 1968); species of *Chilochthonius*, *Drepanochthonius* and *Francochthonius* are restricted to Chile (Beier 1964a; Vitali-di Castri 1976); and the genera *Mairitchanius* and *Tyrannachthoniella* are endemic to New Zealand (Beier 1976). The three Laurasian genera, *Mundoachthonius*, *Malcolmochthonius* and *Mexichthonius* occur in North America, whilst species of...
New troglomorphic species of *Austrochthonius* 207

Table 1 Species of *Austrochthonius*, with distributions and pedipalpal chela ratios.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
<th>Ratio of pedipalpal chela length/width</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. argentinae Hoff</td>
<td>South America</td>
<td>4.81 (female)</td>
<td>(Hoff, 1950)</td>
</tr>
<tr>
<td>A. australis Hoff</td>
<td>Australia</td>
<td>4.07 (female)</td>
<td>(Hoff, 1951)</td>
</tr>
<tr>
<td>A. bolivianus Beier</td>
<td>South America</td>
<td>4.1 (adult)</td>
<td>(Beier, 1966a)</td>
</tr>
<tr>
<td>A. cavicola Beier</td>
<td>Australia</td>
<td>4.2 (adult)</td>
<td>(Beier, 1932)</td>
</tr>
<tr>
<td>A. chilensis chilensis (Chamberlin)</td>
<td>South America</td>
<td>5.2 (male)</td>
<td>(Beier, 1967a)</td>
</tr>
<tr>
<td>A. chilensis magalhanicus Beier</td>
<td>South America</td>
<td>4.30 (female)</td>
<td>(Chamberlin, 1923)</td>
</tr>
<tr>
<td>A. chilensis transversus Beier</td>
<td>South America</td>
<td>not stated</td>
<td>(Beier, 1964a)</td>
</tr>
<tr>
<td>A. chilensis transversus Beier</td>
<td>South America</td>
<td>5.4 (male)</td>
<td>(Beier, 1964b)</td>
</tr>
<tr>
<td>A. casti Harvey</td>
<td>Australia</td>
<td>4.17 (male)</td>
<td>(Harvey, 1991c)</td>
</tr>
<tr>
<td>A. ignaunensis Vitali-di Castri</td>
<td>South America</td>
<td>2.82 (female)</td>
<td>(Vitali-di Castri, 1975)</td>
</tr>
<tr>
<td>A. insularis Vitali-di Castri</td>
<td>Illes Crozet</td>
<td>4.4 (female)</td>
<td>(Vitali-di Castri, 1968)</td>
</tr>
<tr>
<td>A. modestus Beier</td>
<td>New Zealand</td>
<td>5.2-5.3 (male)</td>
<td>(Beier, 1967b)</td>
</tr>
<tr>
<td>A. paraguensis Vitali-di Castri</td>
<td>South America</td>
<td>3.54 (male)</td>
<td>(Vitali-di Castri, 1975)</td>
</tr>
<tr>
<td>A. parvus (Mello-Lettào)</td>
<td>South America</td>
<td>5.3 (male)</td>
<td>(Judson, 2001)</td>
</tr>
<tr>
<td>A. persimilis Beier</td>
<td>South America</td>
<td>4.0 (female)</td>
<td>(Beier, 1964a)</td>
</tr>
<tr>
<td>A. rapax Beier</td>
<td>New Zealand</td>
<td>4.2</td>
<td>(Beier, 1976)</td>
</tr>
<tr>
<td>A. semiseratus Beier</td>
<td>South America</td>
<td>4.64 (female)</td>
<td>(calculated from Beier, 1930, fig. 11a)</td>
</tr>
<tr>
<td>A. strigosus sp. nov.</td>
<td>Australia</td>
<td>6.35 (male)</td>
<td>this paper</td>
</tr>
<tr>
<td>A. tuligreni (Beier)</td>
<td>South Africa</td>
<td>4.6 (adult)</td>
<td>(Beier, 1931)</td>
</tr>
<tr>
<td>A. zealandicus zealandicus Beier</td>
<td>New Zealand</td>
<td>4.9-5.2 (male)</td>
<td>(Beier, 1967b)</td>
</tr>
<tr>
<td>A. zealandicus obscurus Beier</td>
<td>New Zealand</td>
<td>4.1-4.4 (female)</td>
<td>(Beier, 1966b)</td>
</tr>
</tbody>
</table>

with 3 pairs of lyrifissures, one pair situated antero-medially, the second pair situated interno-lateral to the "ocular" region, and the third pair situated exterior to the sole pair of setae of the posterior row.

Coxal region: coxal chaetotaxy: 2+3: 3 + 2m: 4: 5: 5 (Figure 4); manducatory process with 2 acuminated distal setae, about equal in length to each other; pedipalpal coxa without dorsal setae; intercoxal tubercle absent; coxa I without apical projection, but with 2 small microsetae (m) situated on distal margin; other setae on coxa I situated near trochanteral foramen (Figure 4); coxal spines present only on coxa II, 6 (left coxa) or 7 (right coxa) bipinnate spines present, bases not contiguous (Figure 4).

Legs: femur + patella IV 2.84 times longer than deep; heterotarsate; arolium slightly shorter than claws, claws simple.

Dimensions (mm)

Holotype male (WAM T65550): Body length 1.184. Pedipalps: trochanter 0.176/0.102, femur 0.505/0.102, patella 0.217/0.115, chela 0.768/0.121, hand length 0.262, movable finger length 0.499. Chelicera 0.352/0.169, movable finger length 0.195. Carapace 0.403/0.384. Leg I: femur 0.280/0.054, patella 0.131/0.051, tibia 0.150/0.041, tarsus 0.438/0.147. Leg IV: femur + patella 0.417/0.147, tibia 0.301/0.069, metatarsus 0.146/0.052, tarsus missing.

Remarks
The single specimen was taken from a bore at a depth of approximately 5 m during sampling targeting stygofauna in the region. The pseudoscorpion was collected in a sample raised to the surface using a modified plankton net and collection jar, lowered into a borehole through a 50 mm diameter piezometer (a non-pumping well, generally of small diameter, for measuring the elevation of a water table or for other groundwater monitoring) within limestone sediments in the Ludlow region. Additional wells were sampled in the area by the junior author and, despite several sampling attempts in the region, no further specimens were obtained. Thus, at present, *A. strigosus* is known only from a single karst location situated in south-western Australia. The type locality comprises open woodland composed of Tuart (*Eucalyptus gomphocephala*, Myrtaceae) and Peppermint (*Agonis flexuosa*, Myrtaceae) with an understorey dominated by weeds including Arum Lily (*Zantedeschia aethiopica*, Araceae) and introduced grasses on a floor of dense leaf litter and sandy soil.
Figures 1-4 *Austrochthonius strigosus* sp. nov., holotype male. 1, left chela, lateral view. 2, right pedipalp, dorsal view. 3, left chelicera, dorsal view. 4, right coxae I and II (abbreviations: ca = coxal spines; m = microsetae). 5, carapace, dorsal view. Scale lines = 0.10 mm (Figure 4), 0.20 mm (Figures 1, 3, 5), 0.50 mm (Figure 2).
The holotype is slightly macerated and covered in a fine sediment which is consistent with the specimen spending some time after death in the water within the bore, or at least on the surface of the water column. It is lacking several legs and the distal segments are missing on others.

On the basis of the total lack of eyes (Figure 5) and the strongly elongated pedipalpal segments (Figures 1, 2), *A. strigosus* is clearly the most troglomorphic species thus far recognized in the genus. The only other cave-dwelling species, *A. cavicola* from the Naracoorte Caves, South Australia and *A. easti* from the Cape Range Caves, Western Australia, possess less elongate pedipalpal segments. Although both *A. strigosus* and *A. cavicola* completely lack eyes (Beier, 1968), *A. easti* has a single pair of small anterior eyes (Harvey, 1991c). All epigean species of the genus, with the exception of the blind *A. iguaazuensis*, either possess two pairs of eyes or a single pair of eyes.

Austrochthonius strigosus satisfies the criteria discussed by Harvey (2002) to be considered as a short-range endemic species. It has an exceedingly small distribution and occurs in such a specialised habitat – karst within the Ludlow region – that the total area of occupancy is likely to be minimal.

Etymology
The specific epithet denotes the slender pedipalpal chela (*strigosus*, Latin, lean, thin).

Austrochthonius muchmorei nom. nov.

Chthonius caecus Tullgren, 1909: 414-415, figure 3 [junior primary homonym of *Chthonius caecus* Packard, 1884 and *Chthonius caecus* Simon, 1885].

Mundochthonius caecus (Tullgren); Nicholls 1933: 111; Chamberlin, 1934: 3; Weidner 1959: 115.

Sathrochthonius (?) tullgreni Chamberlin: Beier, 1966a: 276; Muchmore 1982: 158.

Remarks
Tullgren (1909) described *Chthonius caecus* based upon a single male collected from Brunswick (a small town to the south of Perth that is now called Brunswick Junction, 33°15'S, 115°50'E) during the Michaelsen and Hartmeyer Expedition on 7 October 1905. The specimen was doubtfully transferred to the genus *Mundochthonius* by Beier (1932: 38) who reported that the specimen was lost (“Type verloren gegangen”). Weidner (1959) reported that the specimen was lost in July 1930 from the Zoologisches Institut und Zoologisches Museum, Universität Hamburg Germany, which has been recently confirmed for us by Dr Hieronymus Dastych (in litt., 17 May 2006). Chamberlin (1962) speculated on the identity of *C. caecus* and tentatively transferred it to his newly formed genus *Sathrochthonius*, also noting that it was a junior primary homonym of both *C. caecus* Packard, 1884 and *C. caecus* Simon, 1885 (International Commission on Zoological Nomenclature, 1999, Article 58). To resolve the homonymy, Chamberlin (1962) provided the replacement name *S. tullgreni*. Beier (1966a) and Muchmore (1982) doubted that Chamberlin's generic placement of this species was correct, the former by including a question mark after the generic name *Sathrochthonius* (?) *tullgreni*, and the latter by stating that “there is no way to determine the identity of this species until toptype material ... is studied.”

The speculation that Tullgren's specimen was a member of the genus *Sathrochthonius* is here believed to be erroneous, and we suggest that it is better placed in the genus *Austrochthonius*. The original description by Tullgren (1909) clearly illustrates a specimen with straight chelal fingers (when viewed dorsally). The chelal fingers of *Sathrochthonius* species are gently but un-questionably curved (e.g., Chamberlin 1962, fig. 1b; Muchmore 1982, fig. 2), whereas species of *Austrochthonius*, as well as many other chthonioids, possess straight or nearly straight chelal fingers. Furthermore, whilst members of *Austrochthonius* are quite common throughout south-western Australia, species of *Sathrochthonius* are very rare. Indeed, the only records of *Sathrochthonius* from the region are of an unnamed species from Quinup (34°28'S, 116°15'E) (WAM 80/1373), West Cape Howe (35°08'S, 117°36'E) (WAM 89/363-364) and Warren National Park near Pemberton (34°27'S, 116°02'E) (WAM 80/1151-1153). The only other chthonioids in the region are *Lagynothoonius australicus* (Beier) which occurs in high rainfall regions along the south coast of Western Australia, and several species of *Pseudotyonchthonius* which are found in a variety of disjunct locations in the area (Harvey, unpublished data). The description of *C. caecus* by Tullgren (1909) clearly demonstrates that it does not belong to either of these genera.

Based upon this reasoning, we here transfer *Chthonius caecus* Tullgren and the replacement name *Sathrochthonius tullgreni* Chamberlin to *Austrochthonius*. Unfortunately this species then becomes a junior secondary homonym of *Austro-
chthonius tullgreni (Beier, 1931) from South Africa. Therefore a replacement name, *A. muchmorei*, is here proposed.

It is beyond the scope of this paper to provide a complete description of *A. muchmorei* as there is more than one species of *Austrochthonius* occurring in leaf litter and soil within south-western Australia (Harvey, unpublished data) and there are considerable difficulties in determining suitable species level boundaries amongst this assemblage.

Etymology

This species is named for William B. Muchmore, in recognition of his outstanding contribution to pseudoscorpion systematics over a 40-year period. He also suggested that *S. tullgreni* may be misplaced in *Sathrochthonius*.

ACKNOWLEDGEMENTS

We wish to thank Cable Sands (WA) Pty Ltd for access to the study site and Biota Environmental Sciences Pty Ltd for their resources and support. Dr H. Dastych (Zoologisches Museum und Zoologisches Museum, Universität Hamburg) kindly provided information on the holotype of *Chthonius caecus*, and two anonymous referees made valuable comments on a draft of the manuscript.

REFERENCES

International Commission on Zoological Nomenclature
New troglomorphic species of *Austrochthonius*

Manuscript received 19 May 2006; accepted 14 June 2006
Guide to Authors

Subject Matter:
Reviews, observations and results of research into all branches of natural science and human studies will be considered for publication. However, emphasis is placed on studies pertaining to Western Australia. Longer papers will be considered for publication as a Supplement to the Records of the Western Australian Museum. Short communications should normally not exceed three typed pages and this category of paper is intended to accommodate observations, results or new records of significance, that otherwise might not get into the literature, or for which there is a particular urgency for publication. All material must be original and not have been published elsewhere.

Presentation:
Authors are advised to follow the layout and style in the most recent issue of the Records of the Western Australian Museum including headings, tables, illustrations and references.

The title should be concise, informative and contain key words necessary for retrieval by modern searching techniques. An abridged title (not exceeding 50 letter spaces) should be included for use as a running head.

An abstract must be given in full length papers but not short communications, summarizing the scope of the work and principal findings. It should normally not exceed 2% of the paper and should be suitable for reprinting in reference periodicals.

The International System of units should be used.

Numbers should be spelled out from one to nine in descriptive text; figures used for 10 or more. For associated groups, figures should be used consistently, e.g., 5 to 10, not five to 10.

Spelling should follow the Concise Oxford Dictionary.

Systematic papers must conform with the International Codes of Botanical and Zoological Nomenclature and, as far as possible, with their recommendations.

Synonymies should be given in the short form (taxon, author, date, page) and the full reference cited at the end of the paper. All citations, including those associated with scientific names, must be included in the references.

Manuscripts:
The original and two copies of manuscripts and figures should be submitted to the Editor, c/o Publications Department, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986. They must be in double-spaced typescript on A4 sheets. All margins should be at least 30 mm wide. Tables plus heading and legends to illustrations should be typed on separate pages.

The desired position for insertion of tables and illustrations in the text should be indicated in pencil. Tables should be numbered consecutively, have headings which make them understandable without reference to the text, and be referred to in the text.

High quality illustrations are required to size (16.8 cm x 25.2 cm) or no larger than 32 cm x 40 cm with sans serif lettering suitable for reduction to size. Photographs must be good quality black and white prints, not exceeding 16.8 cm x 25.2 cm. Scale must be indicated on illustrations. All maps, line drawings, photographs and graphs, should be numbered in sequence and referred to as Figure/s in the text and captions. Each must have a brief, fully explanatory caption. On acceptance a computer disk containing all corrections should be sent with amended manuscript. The disk should be marked with program (e.g. Word, WordPerfect, etc).

In papers dealing with historical subjects references may be cited as footnotes. In all other papers references must be cited in the text by author and date and all must be listed alphabetically at the end of the paper. The names of journals are to be given in full.

Processing:
Papers and short communications are reviewed by at least two referees and acceptance or rejection is then decided by the editor.

The senior author is sent one set of page proofs which must be returned promptly.

The senior author will receive fifty free offprints of the paper. Additional offprints can be ordered at page proof stage.
CONTENTS

R.E. Johnstone
The birds of Gag Island, Western Papuan islands, Indonesia 115

David L. Morgan and Howard S. Gill
Osteology of the first dorsal fin in two terapontid fishes,
Leiopotherapon unicolor (Günther, 1859) and Amniataba caudavittata
(Richardson, 1845), from Western Australia: evidence for hybridisation? 133

Volker W. Framenau
The wolf spider genus Venatrix Roewer: new species, synonymies and
generic transfers (Araneae, Lycosidae) 145

Mark S. Harvey
New species and records of the pseudoscorpion family Menthidae
(Pseudoscorpiones) 167

Brian Morton
The functional morphology of Penicillus philippinensis
(Anomalodesmata: Clavagelloidea: Penicillidae) and the evolution of
an unique muscular system in the Bivalvia 175

Gregory D. Edgecombe
A troglobitic cryptopid centipede (Chilopoda: Scolopendromorpha)
from western Queensland 193

Mark S. Harvey, Frantisek Štáhlavský and Pieter D. Theron
The distribution of Eukoenenia mirabilis (Palpigradi: Eukoeneniidae):
a widespread tramp 199

Mark S. Harvey and Lee G. Mould
A new troglomorphic species of Austrochthonius (Pseudoscorpiones:
Chthoniidae) from Australia, with remarks on Chthonius caecus 205