The riparian flora and plant communities of the Pilbara region of Western Australia

M.N. Lyons

Department of Parks and Wildlife, Science and Conservation Division, Kieran McNamara Conservation Science Centre, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. Email: mike.lyons@dpaw.wa.gov.au

Abstract - A survey of riparian flora and plant communities was undertaken at 98 wetlands and rivers in the Pilbara region of Western Australia. Sampling was quadrat-based, with floristics, surface soils and wetland attributes recorded. Selected sites captured the full range of Pilbara wetland types including springs, river pools, claypans, salt marshes and rock pools. A total of 455 taxa was recorded from the survey sites, representing ca. 25% of the known flora of the Pilbara bioregion. The flora is dominated by taxa with Eremaean and tropical affinities, with only six taxa endemic in the region. Of recorded taxa known from four or fewer bioregions, most are shared with the adjacent Carnarvon and Gascoyne bioregions rather than the adjoining internally draining deserts. Sixteen taxa of conservation significance were documented, with claypans, the Fortescue Marsh, and Millstream and Karijini National Park sites dominating occurrences of rare species. Eight major groups were defined by classifying wetlands in terms of species presence/absence data. Floristic patterning was strongly aligned with the major wetland types (geomorphic/hydrological) used in the primary sampling stratification. A combination of wetland morphology/hydrological setting, site edaphic attributes and distance to the coast were dominant variables related to riparian floristic composition. Primary compositional separation was observed between riverine and non-riverine sites, with lowland turbid riverine sites with finetextured soils compositionally related to claypans and clay flats. Limited biogeographic patterning was evident except where individual IBRA subregions and drainage basins were dominated by few wetland types.

Keywords – Pilbara, wetland, riparian, floristic composition, botanical survey, vegetation, rivers

INTRODUCTION

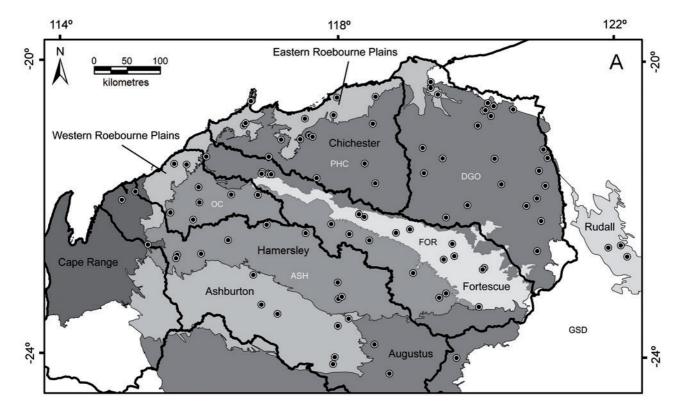
The Pilbara IBRA region of Western Australia is a region of approximately 179,000 km² that corresponds broadly with the Pilbara Craton, a major geological block of Archaean origin (Geological Survey of Western Australia 1990). The region is recognised as biogeographically distinct under the scheme developed by Thackway and Creswell (1994), based on the original Fortescue Botanical District defined by Beard (1990). A detailed description of the soils, climate and landforms of the region is provided by McKenzie *et al.* (2011).

The region's climate is broadly arid, with highly seasonal, typically intense, summer rainfall that may include cyclonic systems (Leighton 2004). This,

coupled with a rocky middle and upper landscape, produces river flows of high energy and volume and relatively short duration. Extensive aquifer systems discharge at the surface to form springs and contribute perennial flows to rivers and creeks. In lowlands, major rivers have broad channels with flood flows forming numerous side channels. Clay flats, claypans and lowland creeks with fine sediments are typically highly turbid.

Land use in the region is overwhelmingly dominated by mining and extensive pastoral use. These uses place pressures on Pilbara wetlands through hydrological changes associated with mine dewatering and discharges, and the impact of grazing cattle. In the Pilbara, stock watering at natural water points is uncontrolled, concentrating trampling and grazing in riparian zones, leading to

Plate 1 A highly turbid ephemeral claypan at Yarraloola (site PSW074A) in lowlands dominated by *Eriachne benthamii*. Trampling by cattle is evident (M.N. Lyons).


bank erosion and waterbody siltation. Aggregation of stock, particularly late in the dry season, leads to the eutrophication of waterbodies from accumulated faeces.

Protection of wetland biological values across the Pilbara is contingent on a greater understanding of their biogeographic patterning, for a number of their biotic components. The existing reserve network in the Pilbara consists of four reserves that, while capturing some major wetlands (e.g. Karijini National Park - gorges, Millstream National Park - springs), do not include the full diversity of Pilbara wetlands. The inclusion of wetland floristic data to inform formal conservation planning is a relatively recent feature of broadscale biodiversity survey in Western Australia (Keighery et al. 2000; Lyons et al. 2004; Walshe et al. 2004). This paper aims to document the riparian flora of the wetlands and rivers of the Pilbara and examine how the major geographic and site environments correlate with floristic composition. The data sets and understanding developed in the current study, coupled with studies of aquatic invertebrates by Pinder *et al.* (2011), will provide the basis for spatially explicit modelling of the biotic composition of Pilbara wetlands and rivers.

STUDY AREA AND METHODS

The Pilbara region as defined in this study is bounded to the south by the Ashburton River and the east by the De Grey–Oakover River system. A small number of wetlands were also sampled in the Rudall River area to the east of the main study area (Figure 1). The study area includes the entire Pilbara IBRA region (Thackway and Cresswell 1994) and additional small areas of the adjoining Gascoyne and Little Sandy Desert regions, representing a total area of approximately 225,000 km².

Precipitation across the region is dominated by summer rainfall associated with tropical lowpressure systems producing thunderstorms and cyclones. Annual average rainfall is 290 mm.

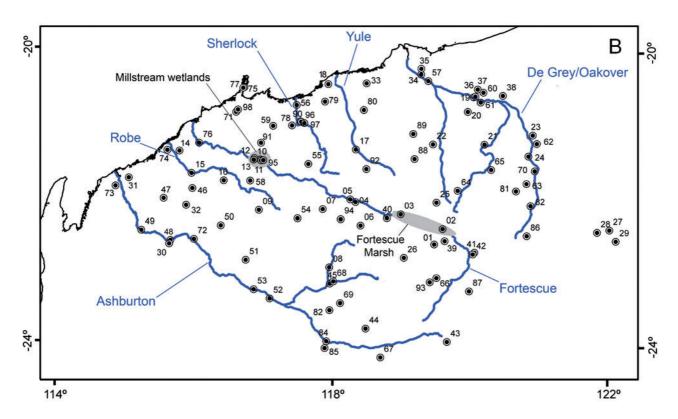


Figure 1 Maps of the Pilbara study area showing the 98 wetland sites sampled (note A and B sites at the same wetland are shown as a single point). Figure 1A shows IBRA6.1 subregions as shaded areas with full names; the Pilbara Bioregion comprises four subregions: Roebourne Plains (Eastern & Western), Chichester, Fortescue and Hamersley. Drainage basin boundaries are outlined in black and labelled with abbreviated names as follows: ASH, Ashburton; OC, Onslow Coast; FOR, Fortescue; PHC, Port Hedland Coast; DGO, De Grey-Oakover; GSD, Great Sandy Desert. Figure 1B shows the main rivers in blue and two major wetlands (shaded grey). The sampled wetland sites are numbered as per Table 1.

Inter-annually and spatially, rainfall variability is high, driven largely by the occurrence and path of cyclones. Winter rainfall from cold fronts originating in the south contributes significantly in the western coastal and central uplands of the region, and attenuates markedly towards the east. Two resulting bioclimatic zones were identified by Beard (1990), with the western coastal area characterised as semi-desert tropical, and the remainder as desert.

Site selection and sampling

Ninety-eight wetlands were selected to capture the diversity of wetland types present in each of the five major drainage basins within the Pilbara (Figure 1A, Table 1). The selected wetlands formed the basis of an integrated wetland survey of the Pilbara that covered a variety of biotic groups of the water column, including the riparian flora and vegetation reported here (see McKenzie et al. 2009, Pinder et al. 2010). Here, riparian is used to describe environments at the edge of waterbodies; i.e. under the hydrological influence of the wetland but not inundated at the time of sampling. This includes river banks, the waterlogged shallow soil aprons of rock pools, and the margins of claypans. Some riverine communities, such as Melaleuca glomerata on sandy islands, were rarely sampled since they were often not adjacent to waterbodies.

The primary stratification employed in the survey was the *a priori* designation of a number of wetland types based on hydrological and morphological attributes. These closely follow the scheme adopted for the region by Masini (1998): rock pools; springs and their outflow creeks; river pools; turbid linear pools; claypans and flooded clay flats; ephemeral creeks; salt marshes; and gorges. Wetlands were selected by examining topographic maps and consulting local experts, followed by aerial and ground-based reconnaissance. Within major river systems, sampling sites were distributed along the length of the main channel, and included the full range of stream orders from ephemeral headwater creeks to near-coastal river pools (Figure 1B).

Sampling was undertaken within a representative section within each selected wetland. At most wetlands (93), a single linear quadrat (200 m²) was established parallel to the waterbody margin and positioned to capture the typical riparian setting of the wetland. Typically, quadrat configurations at each wetland were a single 4 m x 50 m or 5 m x 40 m rectangle, depending on riparian zone width. Within each quadrat, all vascular plants were scored within eight contiguous 25 m² subquadrats to evaluate the adequacy of quadrat size. Two 200 m² quadrats (designated A and B, see Table

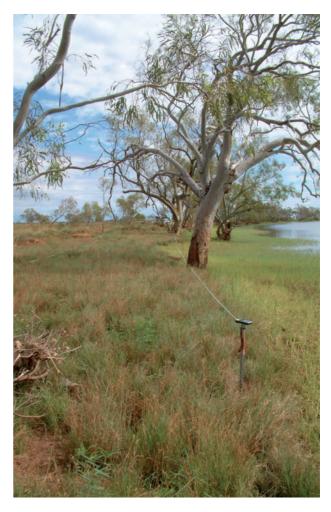


Plate 2 Munreemya Billabong, a seasonal/episodic wetland on Yarrie Station (wetland site PSW036A). The riparian zone dominated by Eucalyptus camaldulensis and E. victrix over Eriachne benthamii and Dichanthium fecundum sampled using a linear quadrat (M.N. Lyons).

1) were sampled at each of five large wetlands (PSW002, PSW003, PSW004, PSW035, and PSW080), to capture the major wetland zonation. At some small wetlands (typically small claypans and ephemeral streams), discontiguous subquadrats were surveyed in order to cumulatively sample 200 m² and to avoid upland vegetation. Quadrats were marked with steel pegs and their locations recorded using handheld GPS. For wetlands where the entire riparian zone was less than 200 m², such as very small claypans and rock pools with fringing shallow soil aprons, the whole wetland fringe was sampled (Table 1). These different quadrat configurations are herein referred to as sites. Sites were scored twice, in autumn and spring, between 2004 and 2006.

Plate 3 Ephemeral claypan on Roy Hill Station (site PSW039A). Sampling the grass- and herb-rich margin downslope of upland vegetation dominated by *Triodia* (D. Mickle).

Species accumulation curves were produced in *EstimateS* (using *Mao Tau*) for eight sites to examine the adequacy of the quadrat design (Colwell 2009). Input data were compiled as a presence/absence matrix of species at the eight subquadrats (25 m²) within each 200 m² quadrat.

Within sites, surface soil samples (at 5-15 cm depth) were collected from 30 spaced points and bulked in the field to yield approximately 2.5 kg samples. Particle size and soil chemistry were analysed by the Chemistry Centre of Western Australia. Parameters analysed included pH, electrical conductivity, organic carbon, phosphorous, nitrogen, potassium, calcium, magnesium, sodium, and percent silt, clay and sand, and three gravel fractions (Table 2). A number of additional variables were derived for the sites by Pinder et al. (2011) and are used here. They include Strahler stream order (Strahler 1952), four inferred permanence/hydroperiod classes (1 = ephemeral, 2 = seasonal episodic, 3 = near permanent, 4 = permanent), straight line distance to coast, riverine

versus non-riverine sites, and altitude (Table 3). A suite of climatic variables (Table 3) was derived from the BIOCLIM module of ANUCLIM (Houlder *et al.* 2000).

To provide a broader perspective on the riparian flora, the proportion it represents of the known Pilbara flora, based on records held at the Western Australian Herbarium (S. Dillon, unpublished data), was determined. Additionally, the broader biogeographic relationships of the riparian flora were explored by examining the IBRA regional occurrences of the taxa across Western Australia based on voucher specimen geocodes. Due to differences in taxonomic resolution across the data sets, some taxa were amalgamated at the specific level to yield a final dataset of 430 taxa across the State's IBRA regions. Data on the occurrence of Pilbara riparian taxa were also compiled for the botanical provinces (Northern, Eremaean and South-West) of Beard (1990), treating the Coolgardie IBRA region as Eremaean.

 Table 1
 Sites sampled for riparian flora.

MeTemWeQ - mean temperature wettest quarter (°C); AnnPrec - annual precipitation (mm); PrecSeas - precipitation seasonality; PrecColQ - precipitation Codes: Site code - unique sample site identifier (see Quadrat dimensions for sampling configuration); Site group - group derived from UPGMA classification; (Strahler, 1952); Riverine/non-riverine (0 - non-riverine, 1 - riverine); DisCoast - straight line distance to coast (km); AnMeTemp - annual mean temperature (°C); MedDiuRa- mean temperature diurnal range (°C); MaxTeCoP - maximum temperature coldest period (°C); TempAnRa - temperature annual range (°C); coldest quarter (mm); Quadrat dimensions in metres (A – 5 x 40; B – 4 x 50; C – discontiguous 5 x 30 + 5 x 10; D – discontiguous 4 x 37.5 + 4 x 12.5; E – 10 x 20; F – Perm class - Inferred permanence class (1 - ephemeral, 2 - seasonal/episodic, 3 - near permanent, 4 - permanent); Stream order - Strahler stream order discontiguous $5 \times 15 + 5 \times 25$; G – discontiguous $5 \times 20 + 5 \times 20$; H – sampled out.

enoiensmib terbeuQ	A	A	Α	A	Α	Α	A	A	A	A	A	Α	A	Α	A	В
PrecColQ	44	42	42	40	40	44	44	44	53	48	51	26	48	48	48	48
PrecSeas	87	88	88	93	93	96	96	62	88	96	84	88	100	100	66	86
isərInnA	275	279	279	303	303	345	345	349	371	357	299	350	352	354	345	346
МеТетМеQ	31	31	31	31.2	31.2	31.4	31.4	31.4	29.6	30.7	31	30.8	31.1	31.1	31.1	31.1
ьЯпАдтэТ	32.1	32.3	32.3	30.6	30.6	29.2	29.2	29.1	29.4	29	31.1	29.7	27.9	28	27.9	27.9
ЧоЭэТхьМ	40.1	40.2	40.2	40.1	40.1	39.7	39.7	39.6	37.9	38.7	39.8	39.3	38.7	38.8	38.8	38.8
ьЯиiПbэМ	15.3	15.6	15.6	14.9	14.9	13.9	13.9	13.8	13.4	13.5	14.2	14.3	14.1	14.1	14.2	14.2
qməTəMnA	24.7	24.8	24.8	25.2	25.2	25.7	25.7	25.7	23.4	24.6	24.9	24.8	25.6	25.6	25.7	25.6
DisCoast	286	267	267	228	228	180	180	174	216	177	365	169	95	26	92	95
Aiverine		0	0	0	0	0	0	\vdash	\vdash			\vdash	\vdash		\leftarrow	1
У ұгеат оғдег	4	0	0	0	0	0	0	7	3	4	Ŋ	\vdash	Ŋ		Ŋ	
Perm class	3	2	2	7	2	2	2	2	4	4	4	4	4	4	4	4
Site group		5.1	5.1	5.2	5.2	2	2	2	6.1	6.1	^	6.1	6.1	6.1	6.1	6.1
Longitude (°E)	119.6566	119.7769	119.7796	119.1499	119.1530	118.4920	118.4751	118.3952	118.5513	117.9859	118.0903	117.0383	117.0553	117.0677	116.9686	116.9615
Latitude (°S)	22.7256	22.5091	22.5085	22.3162	22.3132	29.1530	29.1546	22.1203	22.4774	22.2587	23.0585	22.2674	21.5698	21.5839	21.5519	21.5721
Wetland type	turbid creek pool	salt marsh	salt marsh	salt marsh	salt marsh	claypan	claypan	turbid creek pool	Gorge creek (spring fed)	Gorge creek (spring fed)	river pool	spring	river pool	spring	river pool	spring
ode Site name	PSW001A Coondiner Pool	PSW002A Fortescue Marsh East	PSW002B Fortescue Marsh East	PSW003A Fort Marsh West (Moojari)	PSW003B Fort Marsh West (Moojari)	PSW004A Gnalka Gnoona Claypan	PSW004B Gnalka Gnoona Claypan	PSW005A Koondepindawarrina Pool	PSW006A Fortescue Falls	PSW007A Hamersley Gorge	PSW008A Bobswim Pool	PSW009A Palm Spring on Caves Creek	PSW010A Palm Pool at Millstream	PSW011A Millstream Delta	PSW012A Gregory Gorge Pool	PSW013A Palm Spring at Millstream
Site code	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0	PSW0

PrecColQ	_						⋖	\forall	0	A	4	4	Ţ	f	4	7	4	7	7	7	7	7	V
	54	22	28	37	41	34	37	37	42	38	36	39	44	34	35	33	65	69	61	39	35	35	35
PrecSeas	91	91	92	102	101	107	104	66	66	94	93	91	88	88	87	88	87	92	94	104	103	103	103
isərInnA	291	307	351	314	304	319	329	302	330	286	272	301	297	230	231	224	277	304	321	308	309	305	305
У өМтөТ э М	30.9	31.5	31.6	31.5	30.6	32.1	31.8	31.8	31.4	31.5	31.7	31.1	30.6	31.2	31.1	31.3	31.8	30.3	31.5	30.3	31.2	31.1	31.1
ТетрАпКа	26.3	28.1	29	29.3	24.5	27.8	28.8	30.7	30.6	30	30.9	32	31.2	31.9	31.9	32.1	30.6	24.9	29.3	24.8	25.9	25.5	25.5
4oD9TxsM	37.9	39.5	39.8	39.8	36.4	40.5	40.5	40.7	40.4	40.1	40.4	40.2	39.1	40	39.9	40.1	40.8	37.3	40.1	36.2	38	37.7	37.7
MedDiuRa	14.2	14.8	14.8	15.1	13.1	14.2	14.6	15.6	15.5	15.3	15.6	15.7	14.5	15.1	15.1	15.2	15.4	13.1	15	13.2	13.8	13.6	13.6
qməTəMnA	25.9	26.2	25.9	26	25.9	27.4	26.9	26.3	25.9	26.3	26.1	24.8	24	25.1	24.9	25.1	25.7	25.3	25.9	25.7	26.6	26.5	26.5
DisCoast	21	62	66	114	8	85	104	161	141	164	192	226	291	342	337	362	128	14	06	18	38	24	24
Riverine			\leftarrow	\vdash	\leftarrow						1	П	\vdash	1				0		1	0	0	0
Утгеат от дет	2	4	33	rC	D	9	7	rC	3	7	9	33	2	2	3	7	7	0	7	7	0	0	0
Perm class	2	4	4	33	4	3	4	4	4	3	4	4	4	8	3	2	_	2	3	2	33	2	2
Site group	3	6.1	6.1	^	6.1	∞	6.1	^	6.1	^	∞	6.1	6.1	8	3	^	3	7	6.2	8	33	1	
Longitude (°E)	115.8625	116.0365	116.5147	118.4725	118.0618	120.2020	120.1180	120.3744	119.6136	121.0838	121.0279	119.6793	119.2050	122.2583	122.0768	122.3586	115.7161	115.1048	115.9556	118.6219	119.4204	119.4310	119.4334
Latitude (°S)	21.4435	21.7551	21.8593	21.4255	20.5220	20.6800	20.8840	21.3321	21.3424	21.1906	21.4774	22.1489	22.9156	22.4674	22.5038	22.6186	22.6765	21.8057	22.1945	20.5051	20.3777	20.2894	20.2886
Wetland type	turbid creek pool	river pool	spring	river pool	river pool	river pool	river pool	river pool	river pool	river pool	river pool	spring	spring	river pool	river pool	river pool	claypan	claypan	river pool	turbid creek pool	claypan	claypan	claypan
Site code Site name	PSW014A Myanore Creek Pool	PSW015A Chalyam Pool	PSW016A Nyeetbury Spring	PSW017A Wodgina Pool	PSW018A Munda Homestead Pool	PSW019A De Grey at Yarrie Station	PSW020A Coppin Gap Pool	PSW021A Pelican Pool	PSW022A Glen Herring Pool	PSW023A Tarquin Rockhole	PSW024A Carawine Gorge	PSW025A Bamboo Spring	PSW026A Weeli Wolli Spring	PSW027A Queen Desert Spring	PSW028A Watrara Creek Pool	PSW029A Poonamerrala Creek Pool	PSW030A Moreton Pool	PSW031A Cane River Claypan	PSW032A Creek Pool near Mt. Amy Well	PSW033A Cooliarin Pool	PSW034A Paradise Pool	PSW035A DeGrey Claypan	PSW035B DeGrey Claypan

enoiensmib terbeuQ	А	В	В	О	А	А	A	Э	Э	A	А	А	А	A	А	А	A	A	А	А	A	А	Α
QloOɔərq	35	38	35	43	40	36	37	37	37	45	49	61	63	64	20	61	52	47	47	51	48	41	37
PrecSeas	106	105	103	98	94	98	85	73	73	70	78	92	86	87	88	85	82	78	81	88	105	103	103
isərInnA	323	333	321	272	309	257	257	223	223	236	269	330	318	274	288	332	275	224	234	341	372	304	319
Д эМтэТэМ	31.9	31.5	31.5	31	31.3	30.8	30.8	29.6	29.6	30.6	31.2	31.5	31.3	31.8	31.4	31.8	32	32.2	32.2	30.5	30.6	31	31.5
ТетрАпКа	27.8	27.3	28.1	32.3	30.3	32.6	32.6	33.2	33.2	32.8	31.6	28.7	28.2	30.8	29.4	30.5	31.6	32.5	32.4	29.5	28.1	25.4	26.4
MaxTeCoP	40.4	39.9	39.9	40.1	40	39.7	39.7	38.6	38.6	39.6	40.1	39.8	39.4	40.9	40.1	40.6	41.2	41.4	41.5	38.8	38.3	37.4	38.6
MedDiuRa	14.2	13.9	14.6	15.5	14.5	15.6	15.5	14.9	14.9	14.8	14.4	14.9	14.6	15.4	15	15	15.1	15.1	15.2	13.8	13.9	13.4	13.9
qmэТэМпА	27.2	26.9	26.8	24.7	25.4	24.4	24.4	22.8	22.8	23.8	24.8	26	25.8	25.7	25.5	25.7	25.8	25.7	25.8	24.5	25.1	26.2	26.7
Iscoasi	84	73	92	285	225	312	317	436	436	369	289	74	65	132	95	148	215	288	257	185	105	12	43
Riverine	\vdash	0	0	0	0	0	0	0	0	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	0	\vdash	Н	\vdash	\vdash	
Утгеат от дет	4	0	0	0	0	0	0	0	0	5	\vdash	4	D	5	^	гO	Π	0	^	2	2	₅	9
Perm class	2	7	\vdash	\vdash	2	\vdash	\vdash	7	2	4	3	3	8	4	4	4	4	7	8	7	4	4	4
Guorg stil	3	3	4	4	3	П	4	5.2	5.2	^	6.2	^	∞	∞	∞	^	6.2	7	∞	3	^	^	∞
tude	69	04	27	11	63	87	26	81	34	23	20	1	60	93	32	84	03	81	96	40	52	69	95
Longitude (°E)	120.2269	120.2604	120.6327	119.8111	118.9763	120.2587	120.2356	119.8781	119.8734	118.7123	118.1020	116.0477	115.6209	115.6993	115.2832	116.4684	116.8403	117.1981	116.9596	117.6140	117.7752	117.5969	119.5295
.atitude °S)	969	729	521	750	519	234	502	561	902	322	336	523	096	273	596	791	573	922	299	828	265	124	555
Lati (°S)	20.6696	20.5729	20.6521	22.6750	22.3619	22.8234	22.8502	24.0661	24.0706	23.9022	23.2836	21.9623	22.0960	22.7273	22.5296	22.4791	22.9573	23.4922	23.3667	22.3828	21.6265	20.8124	20.4655
Wetland type	claypan	claypan	claypan	claypan	claypan	claypan	claypan	salt marsh	salt marsh	river pool	spring	river pool	river pool	river pool	river pool	river pool	spring	claypan	river pool	turbid creek pool	spring	river pool	river pool
Site code Site name	PSW036A Munreemya Billabong	PSW037A Coppin Pool	PSW038A Sweet Well Claypan	PSW039A Roy Hill Claypan	PSW040A Mulga Downs Outcamp Claypan	PSW041A Ethel Creek Claypan	PSW042A Jackson Bore Claypan	PSW043A Weelarrana Salt Lake	PSW043B Weelarrana Salt Lake	PSW044A Yandibiddy Pool	PSW045A Fork Spring	PSW046A Red Hill Creek Pool	PSW047A House Pool on Cane River	PSW048A Henry River Pool	PSW049A Whiskey Pool on Ashburton R.	PSW050A Wallarook Pool on Duck Creek	PSW051A Cheela Spring	PSW052A Berringarra Claypan	PSW053A Catfish Pool on Ashburton R.	PSW054A Wackilina Creek Pool	PSW055A Errawallana Spring	PSW056A Pool Spring on Sherlock River	PSW057A Carleecarleethong Pool

enoienemib terbenQ	A	A	A	А	A	А	А	A	А	A	А	А	А	Н	А	В	В	Н	А	Н	G	А	Н
QloOserq	57	40	35	34	39	37	42	41	45	43	49	47	36	49	09	72	22	43	61	43	41	41	39
PrecSeas	95	111	105	106	91	68	68	91	62	89	62	74	91	93	87	06	92	94	06	94	107	102	102
iserInnA	366	323	324	318	285	265	319	301	291	226	275	245	263	569	280	300	292	274	303	272	319	307	309
У өМтөТ өМ	30.8	31	31.8	32	31.3	31.3	30.6	31.1	30	30.4	31.1	31.3	31.5	30.9	32	30.1	30.7	30.6	31.1	30.6	31	30.9	30.7
гупь	28.7	26.3	27.6	28.2	30.3	31.7	32.6	31.9	31.7	33.6	31.5	32.2	31.3	25.1	30.9	24.9	25.2	23.7	26.9	23.7	26.4	25.6	27.1
MaxTeCoP	38.9	37.8	40.2	40.5	40	40.2	39.8	40.2	38.4	39.6	40	40.2	40.3	37.2	41.1	37.2	37.3	36.3	38.3	36.4	37.9	37.2	37.9
MedDiuRa	14.2	13.7	14.2	14.4	15.3	15.7	16.1	15.9	14.6	15.1	14.4	14.7	15.6	13.3	15.4	13.1	13.6	12.5	14.6	12.5	13.7	13.5	14.3
qmэТэМпА	25.1	25.9	27.1	27.3	26	25.4	24.3	25.2	23.4	23.3	24.8	24.7	25.9	26	26	25.1	25.8	25.9	26.1	25.9	26.1	26.1	25.8
DisCoast	125	53	1	94	178	230	217	193	336	418	288	320	218	22	142	20	11	0.9	35		38	24	62
Riverine	1			1		\vdash	\vdash		\vdash	\vdash	1	\vdash	\vdash	0	\vdash	0	0	\vdash	\vdash	\vdash	1	\vdash	0
У фгеат от ет	3	7		4	7		3	33	4	4	1	5		0	\vdash	0	0		Ŋ			4	0
Perm class	3	4	33	2	\vdash	4	4	8	3	4	4	4	4	1	2	\vdash	\vdash	7	4	8		2	2
Site group	3	6.1	6.1	^	6.1	6.1	^	33		∞	^	6.2	6.1	4	∞	4	33		6.1	^	4	3	4
Longitude	116.9090	117.2483	120.3448	120.3067	121.0783	121.0078	119.9912	120.4813	119.6976	118.8731	118.1514	118.2586	121.1253	116.7353	116.0702	114.9090	115.6847	116.8247	116.1547	116.8075	117.6534	118.0150	118.5885
Latitude (°S)	21.8626	21.1039	20.6105	20.7492	21.2538	21.8635	21.9778	21.6806	23.1871	24.3006	23.2533	23.5552	21.6858	20.9100	22.6647	21.9146	21.4285	20.5656	21.3324	20.5736	21.0383	20.7641	20.8755
Wetland type	river pool	spring	spring	ephemeral creek	ephemeral creek	spring	river pool	river pool	river pool	river pool	spring	river pool	spring	rock pools	claypan	claypan	claypan	ephemeral creek	river pool	ephemeral creek	claypan	turbid creek pool	rock pool
ode Site name	J58A Kumina Creek	159A The Springs on Jones River	160A Chinaman Spring	161A Miningarra Creek	162A Gregory Range Creek	163A Skull Springs	164A Bonnie Pool	165A Cookes Creek Pool	166A Kalgan Pool on Kalgan Creek	167A Wannagunna Spring	168A Flatrocks Spring	169A Horrigans Pool	70A Running Waters	771A Karratha Granite Rock	772A Curara Claypan	73A Mindaroo Claypan	774A Yarraloola Claypan	75A Burrup Peninsula Creek	76A Pool on Lower Fortescue River	777A Burrup Peninsula Rockhole	78A Croyden Claypan	779A West Peawah Creek Pool	80A Redrock on Indee Station
Site code	PSW058A	PSW059A	PSW060A	PSW061A	PSW062A	PSW063A	PSW064A	PSW065A	PSW066A	PSW067A	PSW068A	PSW069A	PSW070A	PSW071A	PSW072A	PSW073A	PSW074A	PSW075A	PSW076A	PSW077A	PSW078A	PSW079A	PSW080A

enoienemib terbeuQ	Н	Α	A	О	А	В	Ą	В	Ą	Ą	A	А	A	A	В	Ą	Ą	A	А
PrecColQ	39	37	34	47	20	52	32	36	38	42	43	47	37	46	21	48	41	41	46
PrecSeas	102	68	88	72	89	29	87	81	66	103	108	105	100	79	91	102	107	107	93
iserInnA	309	265	247	230	221	223	230	255	319	336	329	344	313	296	375	356	319	316	269
Д эМтэТэМ	30.7	31.2	31.1	31.6	31.5	30.9	30.9	30.3	31.5	31.5	30.9	30.6	31.5	29.7	30.3	31	31	31.2	30.8
ТетрАпКа	27.1	32	32.1	32.5	33.1	33.2	32.4	32.5	31.2	30.2	26.4	27	30	31.6	29.1	27.9	26.4	26.5	24.9
4oD9Tx6M	37.9	40.2	40	40.7	40.7	40.5	39.7	38.8	40.8	40.3	37.7	37.8	40.3	38.1	38.4	38.7	37.9	38.1	37.1
MedDiuRa	14.3	15.8	15.6	14.8	15	14.9	15.6	15	16	15.7	13.6	13.8	15.2	14.5	13.3	14.1	13.7	13.9	13.2
qməTəMnA	25.8	25.2	25.1	25.1	24.6	24.4	24.6	23.6	25.8	26.1	25.7	25.3	25.9	23.1	24.2	25.5	26.1	26.2	26
JesoSeiU	62	238	266	337	378	386	308	370	150	115	41	20	147	335	201	86	40	43	24
Riverine	0		0		1	1							1		_		\vdash	\vdash	0
Утеат от дет	0	7	5	0	9	3	3	4	D	\vdash	rC	2	4	2	4	2	\vdash	\leftarrow	0
Perm class		3	3		2	2	4	33	33	4	4	4	8	7	7	7	7	\vdash	
Guorg 93iS	4	^	3	33	6.1	3	3	33	^	6.1	^	^	6.1	^	33	33	\vdash	8	3
Longitude (°E)	118.5895	120.8556	121.0803	118.0988	118.0548	118.0298	121.0343	120.1904	119.3435	119.3205	117.6271	117.0697	118.6296	119.5992	118.2583	117.1029	117.6636	117.7091	116.7298
Latitude (°S)	20.8746	21.9690	22.1653	23.6525	25.0842	24.1790	22.5784	23.3621	21.5481	21.2018	21.0977	21.3377	21.6953	23.2485	22.3918	21.5799	21.0444	21.0638	20.8759
Wetland type	rock pool	river pool	river pool	claypan	river pool	ephemeral creek	river pool	river pool	river pool	spring	river pool	river pool	river pool	ephemeral creek	ephemeral creek	ephemeral creek	claypan	clay flat	clay flat
Site name	3 Redrock on Indee Station	A Billan Ballan Creek Pool	A Tongololo Creek Pool	A Turee Creek Claypan	A Gorge Junction Pool	A Glen Ross Creek	PSW086A Carrowina Pool	PSW087A Innawally Pool	PSW088A Rocky Island Pool	PSW089A Panorama Spring	PSW090A Kangan Pool on Sherlock River	PSW091A Harding River Pool	PSW092A Cangan Pool on Cockerega Ck.	PSW093A Homestead Creek	PSW094A Joffre Creek	PSW095A Un-named Creek in Millstream N.P.	PSW096A Benmore Well Claypan	A Croydon Crabhole Flat	PSW098A Karratha Crabhole Flat
Site code	PSW080B	PSW081A	PSW082A	PSW083A	PSW084A	PSW085A	PSW086A	PSW087A	PSW088A	PSW089A	PSW090A	PSW091A	PSW092A	PSW093A	PSW094A	PSW095A	PSW096A	PSW097A	PSW098A

Soil variables for each riparian site sampled. For detail on soils analyses see Meissner et al. (2009). Table 2

Codes: EC (1:5) mS/m – electrical conductivity; pH (H20) – pH in distilled water; OrgC (W/B) % – percent organic carbon (Walkely Black); P (total) mg/kg – total Phosphorus; P (HCO3) mg/kg – extractable Phosphorus; Ca (exch) me% – exchangeable Calcium milliequivalent percent; Mg (exch) me% – exchangeable Magnesium milliequivalent percent; Na (exch) me% – exchangeable Sodium milliequivalent percent; K (exch) me% – exchangeable Potassium milliequivalent percent.

%әш (цэхә) Ж	1.18	3.56	2.34	4.12	ιυ	2.02	2.02	2.03	69:0	0.55	0.17	1.2	0.89	ιυ	6.0	1.6	1.16
уэш (цэхэ) ву	0.33	3.41	2.27	1.64	3.32	0.46	0.46	0.63	1.5	0.41	0.22	2.99	2.07	11.89	1.78	7.62	0.18
%әш (цэхә) ЗМ	2.75	3.13	2.12	3.02	6.54	4.64	4.64	4.42	6.9	4.14	1.32	14.23	7.16	15.58	5.14	6.7	5.73
%әш (қсқр) ш	6.3	7.11	5.48	15.02	9.32	10.76	10.76	10.18	4.12	5.59	4.47	5.46	4.83	12.1	7.24	11.57	15.54
P (HCO3) mg/kg	50	34	24	19	8	23	23	54	9	3	rv.	3	2	6	4	3	6
% mm8.4–2 loverd	0	0	0	0	0	18.1	18.1	0	19.2	28.9	33	16.5	16.4	0	14.4	0	0
% mm8-8.4 l9ve13	0	0	0	0	0	13.3	13.3	0	17.1	12.9	5.3	30.1	15.5	0	40.5	0	0
% mm9I-8 l9ve1	0	0	0	0	0	8.6	8.6	0	15.4	10.2	8.3	15.9	19.5	0	24	0	0
% mmdI< l9ve12	0	0	0	0	0	3.9	3.9	0	15.7	19.6	4.3	11.1	24.1	0	6	0	0
Clay %	31.5	34	21.5	18.5	19.5	36.5	36.5	42	9	8.5	4	14	15	15	14	8	47
% માંડ	12	32	15.5	32.5	31	19.5	19.5	22	10.5	8	5.5	11.5	8	29.5	11.5	17	59
% pueS	56.5	34	63	49	49.5	44	44	36	83.5	83.5	90.5	74.5	77	55.5	74.5	75	24
P (total) mg/kg	640	450	370	350	240	480	480	520	480	270	190	220	170	290	270	110	380
OrgC (W/B) %	1.55	0.37	0.52	0.49	0.78	6.0	6.0	1	2.02	0.76	99.0	0.86	0.41	3.7	1.28	1.02	1.24
(O2H) Hq	6.4	7.4	7.9	7.9	8.2	6.5	6.5	6.3	8.3	8.4	9.8	8.4	8.8	8.3	8.3	8.3	6.3
mS/m EC (1:2)	8	140	150	290	770	8	8	11	70	19	12	200	83	410	85	420	гO
Site code	PSW001A	PSW002A	PSW002B	PSW003A	PSW003B	PSW004A	PSW004B	PSW005A	PSW006A	PSW007A	PSW008A	PSW009A	PSW010A	PSW011A	PSW012A	PSW013A	PSW014A

Ж (ехсһ) те%	1.8	0.44	0.26	0.48	0.38	0.26	0.13	0.19	0.41	0.45	0.28	0.53	0.35	0.22	0.18	2.61	0.5	1.49	0.18	0.42	98.0	0.39
уэш (цэхә) ч	3.11	\leftarrow	1.67	0.84	0.36	3.18	1.66	4.75	2.72	1.74	1.06	0.83	1.01	1.38	1.18	0.64	0.85	4.2	0.14	0.25	1.67	75.0
%әш (цэхә) ЯМ	98.9	8.9	1.91	2.02	1.86	3.52	1.48	4.54	4.91	5.63	6.33	4.63	1.93	2.48	2.11	5.09	1.27	16.03	0.27	1.87	5.5	2.34
Са (ехсh) те%	4.35	6.52	6.34	8.37	6.1	1.72	1.88	2.96	6.25	12.19	10.06	4.58	1.19	2.22	2.31	9.22	2.21	1.73	86.0	4.56	4.24	1.37
Р (HCO3) mg/kg	6	3	4	12	10	2	rV	4	16	17	6	8	4	6	r2	38	15	13	r2	28	гV	^
% mm8.4–2 level %	0	16.7	16.5	11.2	0	25	0	19	0	0	30.5	27.4	0	0	12.2	0	0	0	0	0	0	0
% mm8-8.4 level %.	0	7.8	8.9	16.9	0	7.9	0	25.1	0	0	19.1	12.1	0	0	5.3	0	0	0	0	0	0	0
% mm91–8 lenm %	0	16.6	13.6	11.7	0	10.7	0	14.3	0	0	12.3	6.4	0	0	3.6	0	0	0	0	0	0	0
% mmdI< l9ve12	0	15.7	26.1	6	0	12	0	8.1	0	0	6.4	9	0	0	6.0	0	0	0	0	0	0	0
Clay %	8.5	4	^	12	<u></u>	3.5	2.5	D	6.5	11.5	10	гv	3	4.5	4	39	16.5	13	4	^	39	19
% H!S	14	&	5.5	^	ιC	D	4.5	9	12	14	8.5	^	3.5	5.5	2.5	34	10	29.5	2	^	6	∞
% pueS	77.5	88	87.5	81	88	91.5	93	68	81.5	74.5	81.5	88	93.5	06	93.5	27	73.5	57.5	94	98	52	73
P (total) mg/kg	330	280	190	150	190	100	150	200	260	310	380	300	87	200	110	380	190	250	93	240	130	140
% (W/B) %	0.92	П	0.5	0.56	0.54	0.38	0.4	0.74	1.56	2.41	1.22	0.89	1.02	29.0	0.38	1.68	0.28	1.17	0.17	0.81	0.14	0.18
(O2H) Hq	6	8.4	6	8.4	&	6.7	9.4	9.6	6	∞	8.4	8.5	7.1	8	7.9	9.9	7.4	8.9	7.4	6.9	7.3	6.1
ш2/ш ЕС (1:5)	29	20	30	38	23	48	33	110	39	100	48	40	53	84	230	17	10	350	4	D	7	4
Site code	PSW015A	PSW016A	PSW017A	PSW018A	PSW019A	PSW020A	PSW021A	PSW022A	PSW023A	PSW024A	PSW025A	PSW026A	PSW027A	PSW028A	PSW029A	PSW030A	PSW031A	PSW032A	PSW033A	PSW034A	PSW035A	PSW035B

%әш (цәхә) Ж	0.64	0.1	0.29	0.46	2.7	2.57	0.77	1.11	1.2	0.31	2.54	0.36	0.34	0.22	0.36	0.5	0.87	0.49	0.43	1.2	0.33	0.29
уэш (цэхэ) в Ма (фхер)	0.27	0.08	0.55	0.49	1.42	0.81	1.69	99.0	1.42	6.0	3.22	0.97	0.33	0.25	0.23	1	7.28	0.38	1.02	0.37	1.82	1.39
%әш (цэхә) ЯД	5.22	0.25	0.41	0.45	2.41	1.74	3.79	1.06	1.25	2.16	9.5	2.13	2.5	1.5	1.77	3.84	3.45	1.36	2.2	5.21	6.48	2.29
%әш (цэхә) вЭ	9.61	99.0	92.0	0.73	5.43	5.52	99.9	9.84	8.01	4.78	6.63	4.02	4.98	2.7	6.58	5.74	2.94	3.02	5.72	9.61	6.4	3.6
P (HCO3) mg/kg	14	9	ΓU	4	12	19	13	^	12	8	12	6	4	6	11	гO	4	14	12	15	10	4
% mm8.4–2 level 2	0	0	0	0	0	0	0	0	0	0	26.4	10	0	4.8	0	0	0	22.4	0	0	0	0
% mm8-8.4 level %.	0	0	0	0	0	0	0	0	0	0	6.6	11.1	0	3.1	0	0	0	14	0	0	0	0
% mm91–8 level %	0	0	0	0	0	0	0	0	0	0	10.3	19.5	0	3.8	0	0	0	11.1	0	0	0	0
% mmdl< lessed	0	0	0	0	0	0	0	0	0	0	4.5	26.5	0	2.9	0	0	0	3.1	0	0	0	0
Clay %	26.5	7	9	4	28.5	31	36	80	4	9.5	4.5	9	10	4.5	10.5	11.5	18	6	6	41	9.5	ιυ
% HIS	17	0.5	1	1	13	15.5	6	9	7	9	7.5	5.5	11	4.5	6	7.5	30	∞	6	16	∞	7
% pueS	56.5	97.5	93	95	58.5	53.5	55	98	94	84.5	88	88.5	26	91	80.5	81	52	83	82	43	82.5	93
P (fotal) mg/kg	280	83	78	93	460	840	220	280	200	180	240	390	200	160	230	280	92	260	210	360	240	120
OrgC (W/B) %	98.0	0.16	0.08	0.16	0.21	0.27	0.11	0.18	0.14	0.71	2.93	0.59	0.57	0.44	0.42	0.46	0.45	0.36	0.44	96.0	1.72	0.29
(O2H) Hq	9.9	6.5	7.7	7.8	7.3	7.4	7.7	8	8.2	8.7	8.5	8.4	7.7	8.5	8.3	8.4	9.1	7.5	8	9	9.8	8.9
mS/m EC (1:5)	9	2	6	5	39	8	17	300	530	32	130	48	50	21	20	54	280	25	71	8	49	92
Site code	PSW036A	PSW037A	PSW038A	PSW039A	PSW040A	PSW041A	PSW042A	PSW043A	PSW043B	PSW044A	PSW045A	PSW046A	PSW047A	PSW048A	PSW049A	PSW050A	PSW051A	PSW052A	PSW053A	PSW054A	PSW055A	PSW056A

Ж (ехсh) те%	0.11	1.17	0.17	0.85	0.11	0.7	0.15	0.46	0.12	0.33	0.49	1.02	0.15	0.25	0.39	0.89	0.22	1.18	0.41	0.55	0.81	0.31
//у (ехср) ше Ма (ехср)	0.32	0.52	0.89	1.27	1.34	1.38	1.39	10.03	0.37	0.73	0.94	2.72	0.3	0.42	0.5	0.31	1.2	0.71	2.42	1.78	0.25	0.85
%әш (цэхә) ВМ	0.91	1.58	12.76	7.64	1.32	5.56	2.4	3.82	1.11	2.75	3.32	4.02	0.7	1.07	3.03	5.5	99.0	2.59	3.62	6.35	2.39	0.2
%әш (цэхә) ш	2.85	2.47	8.01	9.21	3.06	5.63	2.14	7.77	1.5	3.37	5.26	4.43	1.51	2.01	4.17	6.5	1.05	5.12	7.81	7.34	4.19	1.12
P (HCO3) mg/kg	5	Ŋ	2	15	4	9	9	32	2	4	8	^	1	2	22	25	2	10	∞	11	22	4
% mm8.4-2 level %	0	19.1	0	0	35	0	0	0	0	19.1	21	0	0	24.2	0	0	0	0	0	10.6	0	0
% mm8-8.4 level %	0	18.8	0	0	9	0	0	0	0	12.5	12.7	0	0	6.6	0	0	0	0	0	12.8	0	0
% mmdl-8 leverD	0	22.9	0	0	5.4	0	0	0	0	22.1	6.6	0	0	7.9	0	0	0	0	0	18.4	0	0
Gravel >16mm %	0	16.4	0	0	8.1	0	0	0	0	20.6	5.4	0	0	3.1	0	0	0	0	0	23.4	0	0
% yel)	2.5	3.5	8	5.5	2.5	6.5	8	17.5	4	4	9	3.5	2.5	4	14.5	45	6.5	30.5	^	6	29	13.5
% HIS	0.5	8	∞	∞	1.5	9.5	7	13.5	5.5	3.5	5.5	гO	7	1	14	23.5	0.5	12	10.5	9	∞	4
% pueS	26	93.5	84	86.5	96	84	95	69	90.5	92.5	88.5	91.5	95.5	95	71.5	31.5	93	57.5	82.5	85	63	82.5
gA\gm (lstot) ¶	110	440	140	320	190	210	350	480	110	330	180	200	78	270	300	410	78	290	240	280	270	110
OrgC (W/B) %	0.07	0.38	1.27	4.22	0.37	1.44	0.45	1.37	0.38	0.62	0.45	1.1	0.3	0.21	0.78	1.15	90.0	0.28	1.68	0.84	92.0	0.16
(O2H) Hq	8.3	7.4	8.5	8.9	9.2	8.8	8.4	8.9	^	8.4	9.8	8.5	8.4	8.3	6.2	5.2	9.2	7.4	8.2	8.2	5.9	7.6
ш2/ш ЕС (1:2)	9	20	38	100	31	32	150	190	11	24	36	140	24	37	15	6	9	12	190	290	^	23
Site code	PSW057A	PSW058A	PSW059A	PSW060A	PSW061A	PSW062A	PSW063A	PSW064A	PSW065A	PSW066A	PSW067A	PSW068A	PSW069A	PSW070A	PSW071A	PSW072A	PSW073A	PSW074A	PSW075A	PSW076A	PSW077A	PSW078A

Sand % Sa		(0)	%(A/V)) mg/kg				% ww9[<	% mm91–8	% mm8-8.4	% mm8. 1 –2	84/8m (£(%әш (ц	%әш (ү	%әш (ч	%әш (
130 85.5 6 8.5 0 0 0 184 4.34 1.34 1.34 0.15 120 81.5 10.5 8.5 2.4 3.2 7.1 19.4 3 1.44 0.94 0.17 480 86. 7 7 22.1 14 10.4 17.3 96 1.17 0.73 0.72 280 77.5 9.5 13 5.8 10.1 6.9 8.6 11 8.11 2.14 0.73 0.72 280 77.5 9.5 13 6.9 0.0 0	zH) Hd		I) OgrO	lsioi) q	% pues	% IIIS	Clay %	Gravel	Gravel	Gravel	Gravel	D (HCC	охэ) вЭ	oxə) gM	Na (exc	үсхә) Ж
480 86 24 32 7.1 194 3 1.44 094 0.04 0.07 480 86 7 22.1 14 10.4 17.3 96 1.17 0.73 0.72 390 77 13 10 0 0 0 29 462 2.32 791 280 77.5 9.5 13 5.8 10.1 6.9 8.6 11.7 0.73 0.25 791 280 77.5 9.5 13 6.9 0	6.4		1.02	130	85.5	9	8.5	0	0	0	0	18	4.34	1.34	0.15	0.41
480 86 7 7 22.1 14 10.4 17.3 96 1.17 0.73 0.22 0.23 0.24	9		3.48	120	81.5	10.5	∞	2.4	3.2	7.1	19.4	3	1.44	0.94	0.17	0.18
390 77 13 10 0 0 0 462 232 231 791 280 775 9.5 13 5.8 10.1 6.9 86 11 8.11 2.14 0.39 190 78.5 9.5 16.5 0 0 0 13 5.8 2.75 7.7 260 71 13 16.5 6.0 0 0 13 5.8 2.75 0.7 290 84 7 9.6 2.6 0 <td>5.3</td> <td></td> <td>).42</td> <td>480</td> <td>98</td> <td></td> <td>^</td> <td>22.1</td> <td>14</td> <td>10.4</td> <td>17.3</td> <td>96</td> <td>1.17</td> <td>0.73</td> <td>0.52</td> <td>0.28</td>	5.3).42	480	98		^	22.1	14	10.4	17.3	96	1.17	0.73	0.52	0.28
280 775 9.5 13 5.8 10.1 6.9 8.6 11 8.11 2.14 0.39 190 78.5 5.5 16.5 0 0 0 13 5.88 2.75 0.77 260 71 13 16.5 8.1 7.7 16.6 7 9.46 3.04 0.77 390 84 7 9 6.2 9.6 0 0 1.0 9.46 3.04 0.77 120 89.5 4 6.5 0 0 0 0 1.0	9.3		1.95	390	77	13	10	0	0	0	0	29	4.62	2.32	7.91	1.02
190 78.5 5 16.5 0 0 0 13 2.58 2.75 0.77 260 71 13 16 26.5 8.1 7.7 16.6 7 9.46 3.04 0.7 390 84 7 9 6.2 9.6 0 24.7 11 4.96 4.18 2.46 290 80 7 6 0 0 0 10 10 0 3 4.18 2.46 0.2 10 0 0 0 10 0	7.3		1.06	280	77.5	9.5	13	5.8	10.1	6.9	8.6	11	8.11	2.14	0.39	0.57
260 71 13 16 26.5 8.1 7.7 16.6 7 9.46 3.04 6.57 390 84 7 9 6.2 9.6 0 24.7 11 4.93 4.18 2.46 290 84 7 9 6.2 9.6 0 0 10 6.71 1.25 0.38 120 80 7 6 0 0 0 3.19 1.25 0.38 120 87 4 4.5 24.8 20.2 20.1 19.8 7 269 0.9 2.7 3.9 3.7 3.7 3.7 3.7 3.7 3.7 3.8 3.7	6.7		0.24	190	78.5	5	16.5	0	0	0	0	13	2.58	2.75	0.77	0.58
390 844 7 9 6.2 9.6 0 24.7 11 4.93 4.18 2.46 290 80. 7.5 12.5 0 0 0 10 6.71 1.22 0.38 120 80.5 4 6.5 0 0 0 3.0 1.22 0.36 180 91.5 4 4.5 24.8 20.2 20.1 19.8 7 2.69 0.9 0.0 140 92 3.5 4.5 24.8 20.2 20.1 19.8 4.42 8.37 3.17 140 92 3.5 4.5 7.6 3.2 4 14.7 6 5.05 1.05 0.0 0	9.7		1.09	260	71	13	16	26.5	8.1	7.7	16.6	^	9.46	3.04	0.57	0.81
290 80 7.5 12.5 0 0 0 0 10 6.71 1.22 0.38 120 89.5 4 6.5 0 0 0 3 3.19 1.22 0.86 180 91.5 4 4.5 24.8 20.2 20.1 19.8 7 2.69 0.9 2.77 0.66 220 87 6 0 <td< td=""><td>7.5</td><td></td><td>0.5</td><td>390</td><td>84</td><td>^</td><td>6</td><td>6.2</td><td>9.6</td><td>0</td><td>24.7</td><td>11</td><td>4.93</td><td>4.18</td><td>2.46</td><td>0.36</td></td<>	7.5		0.5	390	84	^	6	6.2	9.6	0	24.7	11	4.93	4.18	2.46	0.36
120 89.5 4 6.5 0 0 0 3 3.19 1.22 0.66 180 91.5 4 4.5 24.8 20.2 20.1 19.8 7 269 0.9 2.77 0 220 87 8 5 0 0 0 8 4.42 8.37 3.17 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0 2.77 0	7.7		1.13	290	80	7.5	12.5	0	0	0	0	10	6.71	1.22	0.38	1.06
180 91.5 4 4.5 24.8 20.2 20.1 19.8 7 2.69 0.9 2.77 220 87 8 5 0 0 0 0 8 4.42 8.37 3.17 140 92 3.5 4.5 7.6 3.2 4 14.7 6 5.05 2.16 0.66 250 7.5 12 10.5 15.8 10.5 5.9 15.9 10.5	7.6		0.45	120	89.5	4	6.5	0	0	0	0	8	3.19	1.22	99.0	0.19
220 87 8 5 0 0 0 0 8 4.42 8.37 3.17 140 92 3.5 4.5 7.6 3.2 4 14.7 6 5.05 2.16 0.66 0 390 77.5 12 10.5 15.8 10.5 5.9 15 6 5.53 10.52 4.58 9 240 92.5 3.5 4 11.8 26.5 16.5 21.6 6 5.53 1.98 0.2 400 80.5 10.5 3.6 17.1 11.8 23.9 4 4.51 1.98 0.2 270 60 19.5 20.5 0 0 0 4 11.48 3.23 0.24 190 79.5 6.5 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>9.4</td><td></td><td>0.54</td><td>180</td><td>91.5</td><td>4</td><td>4.5</td><td>24.8</td><td>20.2</td><td>20.1</td><td>19.8</td><td>^</td><td>5.69</td><td>6.0</td><td>2.77</td><td>0.26</td></t<>	9.4		0.54	180	91.5	4	4.5	24.8	20.2	20.1	19.8	^	5.69	6.0	2.77	0.26
140 92 3.5 4.5 7.6 3.2 4 14.7 6 5.05 2.16 0.66 390 77.5 12 10.5 15.8 10.5 5.9 15 6 5.33 10.52 4.58 250 92.5 3.5 4.5 7.4 14.6 12.3 30.2 5 1.95 1.95 3.29 400 80.5 10.5 9 3.6 17.1 11.8 23.9 4 1.98 0.2 270 60 19.5 20.5 0 0 0 4 4.51 1.98 0.27 190 79.5 6.5 14 0 0 0 0 8 1.59 0.93 0 180 46 16.5 37.5 0 0 0 0 19.53 2.82 0.39 120 53.5 14 32.5 0 0 0 0 19.1 0	8.2		1.94	220	87	8	rv	0	0	0	0	&	4.42	8.37	3.17	0.24
390 77.5 12 10.5 15.8 10.5 10.5 15.9 15	9.8		0.64	140	92	3.5	4.5	7.6	3.2	4	14.7	9	5.05	2.16	99.0	0.24
250 92.5 3.5 4.5 7.4 14.6 12.3 30.2 5 3.81 1.95 3.29 240 92.5 3.5 4 11.8 26.5 16.5 21.6 6 5.53 1.98 0.2 400 80.5 10.5 9 3.6 17.1 11.8 23.9 4 4.51 2.12 0.14 170 60 19.5 20.5 0 0 0 4 11.48 3.23 0.09 180 46 16.5 37.5 0 0 0 8 19.53 2.82 0.39 120 53.5 14 32.5 0 0 0 0 19.53 2.82 0.39	8.8		1.72	390	77.5	12	10.5	15.8	10.5	5.9	15	9	5.53	10.52	4.58	0.31
240 92.5 3.5 4 11.8 26.5 16.5 21.6 6 5.53 1.98 0.2 400 80.5 10.5 9 3.6 17.1 11.8 23.9 4 4.51 2.12 0.14 0 270 60 19.5 20.5 0 0 0 4 11.48 3.23 0.27 0 180 79.5 6.5 14 0 0 0 8 1.59 0.93 0 0 180 46 16.5 37.5 0 0 0 8 19.53 2.82 0.39 0 120 53.5 14 32.5 0 0 0 5 16.12 4.99 0 0	9.6		0.71	250	92.5	3	4.5	7.4	14.6	12.3	30.2	ro	3.81	1.95	3.29	0.28
400 80.5 10.5 9 3.6 17.1 11.8 23.9 4 4.51 2.12 0.14 0.14 270 60 19.5 20.5 0 0 0 4 11.48 3.23 0.27 0 190 79.5 6.5 14 0 0 0 8 15.9 0.93 0.09 180 46 16.5 37.5 0 0 0 0 8 19.53 2.82 0.39 120 53.5 14 32.5 0 0 0 5 16.12 4.99 0.89	8.5		0.37	240	92.5	3.5	4	11.8	26.5	16.5	21.6	9	5.53	1.98	0.2	0.27
270 60 19.5 20.5 0 0 0 4 11.48 3.23 0.27 190 79.5 6.5 14 0 0 0 8 1.59 0.93 0.09 180 46 16.5 37.5 0 0 0 0 8 19.53 2.82 0.39 120 53.5 14 32.5 0 0 0 5 16.12 4.99 0.89	6.4		1.6	400	80.5	10.5	6	3.6	17.1	11.8	23.9	4	4.51	2.12	0.14	0.33
190 79.5 6.5 14 0 0 0 0 8 1.59 0.93 0.09 180 46 16.5 37.5 0 0 0 8 19.53 2.82 0.39 120 53.5 14 32.5 0 0 0 5 16.12 4.99 0.89	∞		1.01	270	09	19.5	20.5	0	0	0	0	4	11.48	3.23	0.27	0.79
180 46 16.5 37.5 0 0 0 0 8 19.53 2.82 0.39 120 53.5 14 32.5 0 0 0 5 16.12 4.99 0.89	9.9		0.21	190	79.5	6.5	14	0	0	0	0	&	1.59	0.93	60.0	0.28
120 53.5 14 32.5 0 0 0 0 5 16.12 4.99 0.89	8		0.38	180	46	16.5	37.5	0	0	0	0	∞	19.53	2.82	0.39	0.7
	8.6	-	0.42	120	53.5	14	32.5	0	0	0	0	ιC	16.12	4.99	0.89	0.65

Mean values \pm standard error (SE) for species richness and environmental variables for the site groups defined from sampling Pilbara riparian vegetation. Table 3

- annual mean temperature (°C); MedDiuRa - mean temperature diurnal range (°C); MaxTeCoP - maximum temperature coldest period (°C); TempAnRa temperature annual range (°C); MeTemWeQ - mean temperature wettest quarter (°C); AnnPrec - annual precipitation (mm); PrecSeas - precipitation seasonality; PrecColQ - precipitation coldest quarter (mm); EC (1:5) mS/m - electrical conductivity; pH (H20) - pH in distilled water; OrgC (W/B) % - percent organic carbon (Walkely Black); P (total) mg/kg - total Phosphorus; P (HCO3) mg/kg - extractable Phosphorus; Ca (exch) me% - exchangeable Calcium milliequivalent percent; Codes: Species richness - number of taxa per site; Perm class - Inferred permanence class (1 - ephemeral, 2 - seasonal/episodic, 3 - near permanent, 4 - permanent); Stream order - Strahler stream order (Strahler, 1952); Riverine / non-riverine (0 - non-riverine, 1 - riverine); DisCoast - straight line distance to coast (km); AnMeTemp Mg (exch) me% – exchangeable Magnesium milliequivalent percent; Na (exch) me% – exchangeable Sodium milliequivalent percent; K (exch) me% – exchangeable Potassium milliequivalent percent.

Site Group	1		2		3		4		5.1		5.2		6.1		6.2		7		œ	
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Species richness	13.8	2.2	22.0	4.6	41.8	3.0	39.4	3.6	23.5	7.5	10.0	6.0	18.4	1.0	8.6	2.6	26.9	1.6	19.9	2.7
Perm class	2.0	0.2	2.0	0.0	2.2	0.2	1.1	0.1	2.0	0.0	2.0	0.0	3.7	0.2	3.5	0.3	3.2	0.2	3.4	0.2
Stream order	1.0	0.8	0.4	0.4	2.1	0.3	0.1	0.1	0.0	0.0	0.0	0.0	2.8	0.3	2.3	6.0	3.3	0.3	5.2	9.0
Riverine/lacustrine	0.4	0.2	0.2	0.2	0.7	0.1	0.1	0.1	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
DisCoast	137.2	66.2	167.2	43.9	166.8	27.3	119.4	47.9	267.0	0.0	332.0	0.09	143.6	18.2	228.5	51.1	173.6	27.7	158.8	39.2
Climatic variables																				
AnMeTemp	25.6	0.4	25.6	0.1	25.4	0.2	25.6	0.2	24.8	0.0	24.0	9.0	25.6	0.1	25.3	0.3	25.3	0.2	25.8	0.3
MedDiuRa	14.4	0.4	14.0	0.3	14.4	0.2	14.3	0.4	15.6	0.0	14.9	0.0	14.6	0.2	14.8	0.1	14.6	0.2	14.9	0.2
MaxTeCoP	38.6	0.5	39.5	0.7	39.0	0.3	38.6	0.4	40.2	0.0	39.4	0.4	39.3	0.2	40.4	0.3	39.2	0.3	40.2	0.3
TempAnRa	28.4	1.4	29.0	1.2	29.1	9.0	28.1	1.2	32.3	0.0	31.9	0.7	29.2	0.4	31.2	0.2	29.4	9.0	30.0	0.7
MeTemWeQ	31.0	0.0	31.3	0.3	31.0	0.1	30.9	0.1	31.0	0.0	30.4	0.4	31.2	0.1	31.5	0.2	31.0	0.1	31.6	0.2
AnnPreci	292.2	10.2	313.4	22.5	292.1	6.7	292.4	8.7	279.0	0.0	263.0	20.0	318.6	7.1	277.5	7.4	300.0	8.0	281.1	10.6
PrecSeas	97.2	4.0	91.8	3.4	92.2	2.1	95.1	3.1	88.0	0.0	83.0	5.0	94.9	1.8	82.0	1.9	92.5	2.4	90.2	3.3
PrecColQ	38.2	1.6	49.6	4.7	44.1	1.8	45.1	4.5	42.0	0.0	38.5	8.0	45.5	1.6	52.3	1.3	43.8	1.7	50.4	4.2
Soil variables																				
Gravel >16mm (%)	0.0	0.0	2.2	8.0	1.4	0.8	0.3	0.3	0.0	0.0	0.0	0.0	9.8	1.8	1.1	1.1	7.0	2.3	6.0	9.0
Gravel 8–16mm (%)	0.0	0.0	6.1	2.4	2.6	1.3	0.5	0.5	0.0	0.0	0.0	0.0	0.6	1.6	2.6	2.4	6.3	2.0	1.5	1.1

Site Group	1		2		æ		4		5.1		5.2		6.1		6.2		7		00	
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Gravel 4.8–8mm (%)	0.0	0.0	8.1	3.1	1.6	1.0	1.0	1.0	0:0	0.0	0.0	0.0	10.8	2.2	2.5	2.3	4.5	1.4	1.8	1.4
Gravel 2–4.8mm (%)	0.0	0.0	11.7	4.6	3.3	1.6	2.8	2.7	0.0	0.0	0.0	0.0	13.3	2.3	9.9	6.2	9.4	2.3	2.9	2.3
Sand %	62.9	5.0	56.1	8.8	71.6	4.1	81.6	5.1	48.5	7.3	9.69	10.3	82.6	1.9	73.3	9.6	85.7	2.0	79.1	6.3
Silt %	10.2	1.4	15.8	2.7	10.8	1.5	5.7	1.9	23.8	4.1	17.9	7.0	9.1	1.2	17.3	6.1	6.5	6.0	9.1	2.2
Clay %	26.9	4.1	28.1	6.1	17.7	2.7	12.6	4.0	27.8	3.1	12.5	3.3	8.3	6.0	9.5	3.5	7.7	1.4	11.8	4.2
EC (1:5) mS/m	5.8	1.1	12.4	3.0	23.9	7.3	11.3	2.7	145.0	2.5	472.5	98.4	114.3	23.9	196.0	54.1	0.69	14.7	37.3	10.2
pH (H2O)	8.9	0.2	8.9	0.2	7.2	0.1	7.5	0.4	7.7	0.1	8.1	0.1	8.5	0.1	8.7	0.2	8.6	0.2	7.8	0.3
OrgC (W/B) %	0.5	0.2	0.7	0.1	0.7	0.1	0.3	0.1	0.4	0.0	0.4	0.1	1.2	0.2	1.2	9.0	6.0	0.1	0.7	0.2
P (total) mg/kg	388.0	131.9	131.9 386.0	63.0	251.0	24.9	142.7	30.2	410.0	20.0	267.5	27.7	254.3	15.5	165.0	37.3	245.7	22.8	222.2	29.3
P (HCO3) mg/kg	17.8	7.5	25.8	7.3	10.6	1.7	7.6	2.7	29.0	2.5	11.5	2.4	5.8	8.0	7.5	2.4	9.4	1.9	10.7	2.3
Ca (exch) me%	3.8	6.0	7.4	1.8	6.5	1.0	2.3	8.0	6.3	0.4	10.5	1.3	6.2	9.0	3.2	1:1	4.8	0.4	5.9	6.0
Mg (exch) me%	2.7	0.7	3.3	0.7	2.7	0.3	1.4	0.5	2.6	0.3	3.0	1.1	6.4	8.0	7.4	2.0	3.1	0.5	2.8	9.0
Na (exch) me%	0.7	0.3	9.0	0.1	9.0	0.1	8.0	0.2	2.8	0.3	1.8	0.5	2.5	0.5	3.8	1.4	2.2	9.0	9.0	0.2
K (exch) me%	1:1	0.4	1.4	0.3	8.0	0.1	0.4	0.1	3.0	0.3	2.9	6.0	8.0	0.2	1.3	0.5	0.4	0.1	0.4	0.1

Data analysis

Species presence/absence data were compiled for sites by combining seasonal samples. Site resemblance matrices were generated using the Bray-Curtis similarity measure in Primer (Primer-E Ltd 2008). The influence of singleton species (species with a single site occurrence) was assessed by comparing resemblance matrices, including and excluding singletons, using Primer's RELATE routine (999 permutations). Analysis of similarity (anosim) routines (Clarke and Green, 1998) were used to examine the significance of relationships between the floristic composition of sites with a priori wetland types, IBRA subregion, permanence, riverine versus lacustrine waterbodies, and catchment basin occurrence. For interpretation, categorical variables were overlain on non-metric multidimensional scaling ordinations of sites (nMDS, 50 starts; Primer-E Ltd. 2008). Two-dimensional ordinations were used as they showed similar stress to 3D outputs.

The BEST/BIOENV procedure in PRIMER was used to explore the relationship between site compositional similarity and environmental attributes. This module uses Spearman's rankorder correlation to match distances in a site association matrix to Euclidean distances among each of its environmental attributes. Continuous variables used in the analysis included chemical and textural attributes of the soil, BIOCLIM climatic variables, distance to coast and altitude. Categorical variables included ordinal permanence class, Strahler stream order and the two-state categorical variable riverine/non riverine. For pairs of variables that were highly intercorrelated (P > 0.9), a single variable was retained. In the final data set, distance to coast was retained in preference to annual range of temperature, and percentage clay was retained in preference to percentage sand. Highly skewed variables were log-transformed and the resulting variable matrix normalised.

Some sites were excluded from the analysis of environmental correlates. Soil data were not available for PSW004B, and PSW003A was an extreme compositional outlier. Six saline sites sampling the Fortescue Marsh and Weelarana Salt Lake were also excluded from the BEST/BIOENV procedure since they were compositionally and environmentally very distinct from the remainder of the data set.

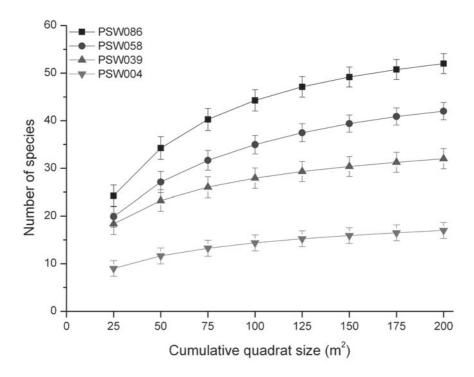
Site and species classification

The data matrix of species presence/absence at sites (excluding singletons) was re-ordered to produce a two-way table for interpretation (Appendix 1) (Belbin 1995) by using the program

PATN (v3.12) to classify sites according to similarities in their species composition (Bray-Curtis measure of dissimilarity), and species according to their co-occurrence at sites (the twostep algorithm, Belbin 1980). Both classifications used the flexible UPGMA (unweighted pair-group mean average) sorting strategy with the beta value set to -0.1 (Belbin 1995; Sneath and Sokal 1973). Indicator species showing high fidelity and/ or specificity to site groups were identified using the 'Indicspecies package' in the R statistical computing language (De Caceres and Legendre 2009, R development core team 2009). Monte Carlo randomisation was used to test the significance of taxa indicative of both individual and multiple groups of sites (P < 0.05).

RESULTS

Sampling adequacy


Sites included a range of species richness scores (12–52 taxa) and wetland types. Comparison of the observed richness for each site and estimators of total richness (Figure 2 – four examples shown) revealed that the quadrat design employed had captured, on average, 89% (79%–100%) of the total richness in the sites (ICE estimator, see Colwell, 2009).

Riparian plant diversity

A total of 455 taxa was identified from the 98 wetlands and rivers sampled during the survey (Table 1, Appendix 2). These taxa were distributed among 62 families and 202 genera. Dominant plant families were Poaceae (18.5% of taxa), Fabaceae (11.4%), Asteraceae (10.8%), and Cyperaceae (8.1%). Dominant genera included *Acacia* (4.4%), *Eragrostis* (2.9%), *Cyperus* (2.9%), *Ptilotus* (2.0%), *Eriachne* (2.0%) and *Fimbristylis* (2.0%).

The taxa represent approximately 25% of the known flora of the Pilbara bioregion (S. Dillon unpublished data), and are dominated by species that occur elsewhere in the Eremaean (398 taxa) and Northern (295 taxa) Botanical Provinces (after Beard 1990). Pilbara populations of twenty taxa (e.g. Atalaya hemiglauca, Lobelia arnhemiaca and Terminalia canescens) occur in the Pilbara as populations disjunct from the Kimberley. A group of 143 taxa extend into the South-West Botanical Province. Of these, the majority occur at the periphery of this province, i.e. within the Avon-Wheatbelt (105 taxa) and Geraldton Sandplains (also 105 taxa) bioregions.

Of those taxa with more restricted distributions (known from six or fewer IBRA regions – 88 taxa), only the cosmopolitan *Pteris vittata* occurs in the

Figure 2 Expected species richness accumulation curves based on the *Mao Tau* function for four sites with a range of total observed richness. Error bars equal one standard deviation.

temperate south-west of Western Australia. Taxa known from four or fewer bioregions (64 taxa) largely extend into adjacent bioregions. Of these, the Carnarvon (29 taxa) and Gascoyne (29 taxa) share a greater number of taxa with the Pilbara than Dampierland (10 taxa) and the Murchison (nine taxa), with a small component occurring in the adjacent Great Sandy Desert (seven taxa) and Little Sandy Desert (nine taxa) bioregions.

Naturalised taxa represented 6.6 % of the flora, noting that the weed status of some species (e.g. Flaveria trimera) remains contentious (see Keighery 2010). The most frequently recorded weeds included Cenchrus ciliaris (46% of sites), Cynodon dactylon (22%), and Cenchrus setiger (17%). Notable weed records included Conyza parva collected from Chinaman Spring (PSW060), on the northern edge of the study area, a major range extension from near-coastal areas of south-west Western Australia. Previously known anecdotally (Keighery 2010), Gnaphalium polycaulon is confirmed as occurring in the Pilbara, with a record from Coondiner Pool (PSW001).

Sixteen taxa on the Department of Parks and Wildlife's Priority Flora List (Smith 2013) were recorded (see Appendix 2). A number are associated with wetlands within and bordering the Fortescue Marsh Land System as defined by Van Vreeswyk et al. (2004). Both Helichrysum oligochaetum and Rhodanthe ascendens were recorded from

Koondepindawarrina Pool (PSW005). Tecticornia medusa and T. globulifera, formerly known only from the Fortescue Marsh, were also recorded from Weelaranna Salt Lake (PSW043). Eleocharis papillosa, previously known from scattered localities across central Australia and near Onslow at the edge of the Pilbara, was recorded from two sites on the Fortescue Marsh (PSW002, PSW003). The new record of Myriocephalus scalpellus from near Onslow (PSW073) represents the only known population other than the type locality at Coondiner Pool (PSW001). Eremophila spongiocarpa, endemic in the Pilbara and restricted to the Fortescue Marsh, was recorded within its known range (PSW003). Other notable priority taxa include Cladium procerum which occurs in the Pilbara as a major outlier from populations in eastern Australia. Known from both Millstream and Karijini National Park, it was recorded at a known locality (at PSW006). Also recorded from a known population at Fortescue Falls, Adiantum capillus-veneris has a scattering of localised populations across much of Australia. Eragrostis surreyana is endemic in the Pilbara IBRA region, and was recorded from a known population on the Burrup Peninsula. Although not listed as priority taxa, the Pilbara endemics Bergia perennis subsp. perennis, Eriachne tenuiculmis, Sida arsiniata and Stemodia kingii were also recorded during the survey.

Major range extensions

The grasses Imperata cylindrica and Pseudoraphis spinescens have distributions that extend from the Kimberley region across northern Australia and down the eastern Australian coast to South Australia, with numerous inland occurrences. Not previously known from the Pilbara, Imperata cylindrica occurred at three sites: Fortescue Falls (PSW006), Palm Spring on Cave Creek (PSW009) and Millstream Delta (PSW011). Prior to the current survey, the only Pilbara record of Pseudoraphis spinescens was a collection by A. Forrest on the Fortescue River in 1878 (Mueller 1881a, 1881b). During the survey it was collected at four sites: Moreton Pool (PSW030), Munreemya Billabong (PSW036), Curara Claypan (PSW072), and West Peawah Creek Pool (PSW079). Nymphoides indica, recorded at De Grey claypan (PSW035), is the first collection for the Pilbara bioregion. Its known distribution includes much of the world's tropics and extends from the Kimberley across the north and down the east coast of Australia.

Species frequency and richness

Of the 450 taxa analysed, two-thirds (66.4%) occurred at fewer than five sites (see Appendix 1), and one-third (33.2%) occurred at a single site (Appendix 3). Three taxa, Cyperus vaginatus (perennial sedge), Eragrostis tenellula (annual grass) and Centipeda minima (annual herb), occurred at more than half the sites. Species richness ranged from three (PSW032) to 87 taxa per site (PSW085) and averaged 26.3 ± 1.4 . Richness showed significant differences between wetland types (Kruskal-Wallace 1-way ANOVA, P < 0.005), with gorge creeks (20.0 \pm 2), springs (18.3 \pm 1.4) and salt marshes (14.5 \pm 3.5), showing the lowest richness. Gorge creeks were characterised by massive rock and provided limited habitats for annual taxa, instead being dominated by dense perennial sedges and shrubs in soil pockets that are perennially moist. Springs were commonly dominated by dense patches of perennial sedges (typically Cyperus vaginatus), often interspersed with bare areas of calcrete. Salt marsh sites had a limited suite of halophytic taxa.

Rock pools (42.5 \pm 2.5), clay flats (41.0 \pm 6), clay pans (29.7 \pm 3.2) and ephemeral creeks (28.7 \pm 4.4) had the highest mean richness with rich assemblages of herbs and annual and perennial grasses.

Richness also showed significant differences between inferred permanence classes (Kruskal-Wallace 1-way ANOVA, P < 0.005). Ephemeral sites had the highest mean species richness (39.2 \pm 3.6)

and permanent sites the lowest (20.8 ± 2.4). This is related largely to the relative proportion of different wetland types within each class. Ephemeral sites included a number of rock pools (PSW071A, PSW080A) with herb-rich aprons, and claypans and clay flats with rich assemblages of annual taxa. Permanent sites included river pools (15 sites), gorge creeks and the majority of species-poor springs (13 of 15). Seasonal and near-permanent sites showed little difference in richness and were dominated by river pools. Little difference in richness was evident for riverine sites in relation to Strahler stream order; with only order-one versus order-three showing significant pairwise differences (P < 0.05).

Richness of rare taxa, including singletons and species occurring at fewer than six sites, was examined for geographic patterns (Figure 3). Concentration of rare taxa was evident within the Fortescue Marsh and on the periphery of the study area at a small number of sites which included Weelarrana Salt Marsh (PSW043B), claypans, granite rocks and a single seasonal creek (PSW085) at the southern edge of the region. Some concentration of rare taxa along the northern edge of the Hamersley IBRA subregion is associated with rarely recorded taxa from the gorges and upland ephemeral creeks of the Hamersley Range. Notably, few singleton and rare taxa were observed in the Chichester IBRA subregion (Figure 3). High numbers of rare taxa were associated with both wetland-type and water permanence. Overall, ephemeral and seasonal wetland types such as salt marshes, rock pools and claypans showed highest numbers of rare taxa, and their non-uniform distribution across the study area explains much of the observed geographical patterning.

Site classification

Comparison of the full and reduced (singletons excluded) species presence/absence matrices revealed that the two were highly correlated (Rho = 0.99, p < 0.001). In preference, the reduced matrix was used.

The primary division in the classification largely separated non-turbid riverine sites from predominantly non-riverine wetlands and turbid riverine sites with fine-textured soils. Within the last major group, the small number of saline sites formed a distinct group at the next division in the classification. The site classification was ultimately examined at the 8-group level (Figure 4). The tengroup classification and *a prior*i wetland types overlain on 2D nMDS ordinations (Figure 5 A and B), revealed a strong correspondence between floristic groupings and wetland type.

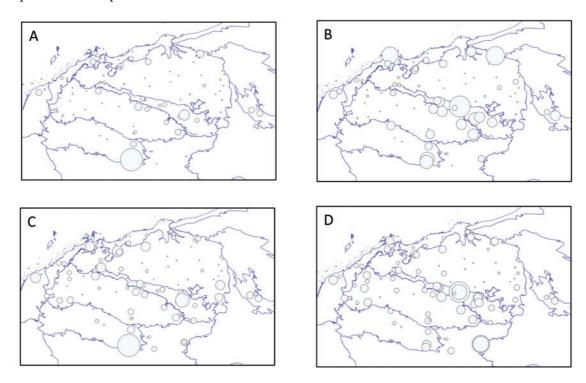
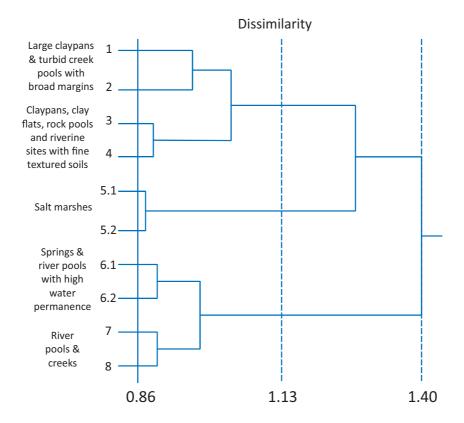



Figure 3 Number of rare taxa (single site record) or uncommon taxa (≤ 5 site records) recorded per site, with symbol-size proportional to richness. (A) Richness within sites containing rare taxa (maximum 15 taxa). (B) Richness within sites containing rare taxa as a proportion of total site richness (maximum 0.27). (C) Richness within sites containing uncommon taxa (maximum 31). (D) Richness within sites containing uncommon taxa as a proportion of total site richness (0.87). Sites with no rare taxa are solid dots.

Figure 4 Classification of 103 survey sites (UPGMA) based on species presence/absence. Classification is shown at the eight group level with descriptions summarising divisions in the classification.

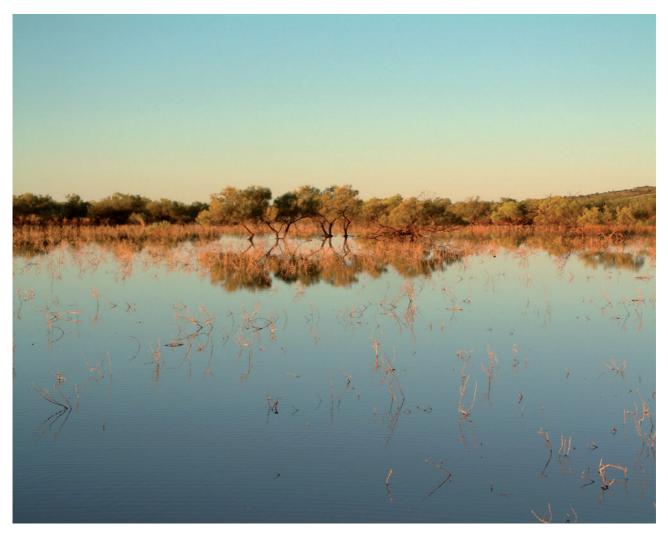


Plate 4 Large seasonal/episodic claypan on Mulga Downs Station (site PSW040A). Stands of *Acacia stenophylla* occur across the inundated bed and within the riparian zone.

Large claypans and turbid linear pools with broad margins

Group 1. A group of five claypan sites at four wetlands including large claypans and a single linear turbid claypan (Coondiner Pool), all typified by very broad, low-gradient margins. Structural dominants within the group included scattered Eucalyptus victrix over Eriachne benthamii with Marsilea spp. forming dense swards. Significant indicator species included Schoenoplectus laevis, Elytrophorus spicatus, Eriocaulon cinereum, Nymphoides indica, Glossostigma diandrum and Rotala diandra. Sites sampled showed a high percentage of clay content (26.9 \pm 4.1) and the lowest EC (5.8 \pm 1.1) and pH (6.8 \pm 1.1) of all site groups. These sites, with fine-textured soils, also had high total phosphorus $(388.0 \pm 131.9 \text{ mg/kg})$. The few wetlands in the group were scattered from the north-west coastal margin to the inland eastern edge of the study area and had the lowest species richness of groups 1-4 (13.8 taxa per site).

Group 2. A group of five sites at four wetlands including three claypans and the margin of a linear, turbid pool. This group also featured *Eucalyptus victrix* as a structural dominant over a relatively species-rich herb layer. Significant indicator species included *Sporobolus mitchellii*, *Bergia trimera*, *B. perennis*, *Myriocephalus oldfieldii*, *M. rudallii* and *Muehlenbeckia florulenta*. The sites showed similar soil chemistry attributes to group 1 (Table 2).

Claypans, clay flats, rock pools, and riverine sites with fine-textured soils

Group 3. A large group of 23 sites with the highest species richness of all site groups (41.8 taxa per site). Sites sampled the riparian zones of linear turbid creeks, river pools, ephemeral creeks, claypans and clay flats (Table 1). Although including a number of wetland morphologies, sites within the group shared fine-textured soils in both riverine and non-riverine settings (mean silt $10.8 \pm 1.5 \%$ and clay $17.7 \pm 2.7\%$). Seventeen sites

included *Eucalyptus victrix* or *E. camaldulensis* subsp. *refulgens* as overstorey trees within the riparian zone. Analysis revealed a single taxon, *Fimbristylis littoralis*, as the significant indicator species for the group. The group shared a number of taxa with group 4 (see below) with *Fimbristylis microcarya*, *Wahlenbergia tumidifructa*, *Lipocarpha microcephala*, *Oldenlandia galioides* and *Drosera indica* being significant indicator species for both site groups taken together.

Group 4. A group of seven sites on the margins of claypans and the aprons of rock pools. As a group, the sites were close to the coast relative to all other groups (119.4 \pm 47.7 km). Claypans in the group were small, highly ephemeral, and occurred within Triodia-dominated flats and dune systems. The edges of pans were low sandy rises with a narrow band of annual taxa recruiting after rainfall and wetland-filling. The group showed similarly high species richness to group 3 (39.4 taxa per site). Sixteen herbs and annual grasses were significant indicator species for the group with Synaptantha tillaeacea var. tillaeacea, Eriachne aristidea, Bulbostylis barbata, Calandrinia ptychosperma, Cyperus pulchellus and Gomphrena leptoclada subsp. leptoclada significant at P < 0.05.

Salt marshes

Group 5.1. A subgroup of two sites within the upper fringe of the Fortescue Marsh, characterised by a group of salt-tolerant indicator species including *Cressa australis, Muellerolimon salicorniaceum, Cyperus bulbosus* and *Eleocharis papillosa*. The sites showed high EC (145 \pm 2.5) and phosphorus (total P, 410 \pm 20) and high clay content (27.8 \pm 3.1). The current survey, however, did not attempt to capture the full floristic variation evident within and bordering the Fortescue Marsh. These two sites sample an extensive zone within the Fortescue Marsh that is dominated structurally by *Muellerolimon salicorniaceum*.

Group 5.2. A subgroup comprising four sites at two wetlands, sampling the edges of the main basins of the Fortescue Marsh and Weelarrana Salt Lake. They were characterised by low shrublands dominated by *Tecticornia* spp. Significant indicator species for the subgroup included *Tecticornia halocnemoides* sens. lat., *T. indica, T. medusa, T. globulifera* and *Triglochin hexagona*. The sites showed the highest soil EC (472.5 \pm 98.4) of all groups, and high total P (267.5 \pm 27.7 mg/kg). Species richness was low with 10 taxa per site. The sites are likely to experience significant periods of inundation during major flooding events.

Springs and river pools with high water permanence

Group 6.1. A subgroup of 23 sites from river pools and 11 of the 15 springs sampled. Sites had a mean species richness of 18.4 taxa, the significant indicator species being Schoenoplectus subulatus and Fimbristylis sieberiana. Structural dominants included Melaleuca argentea, Eucalyptus camaldulensis subsp. refulgens, Acacia ampliceps, Typha domingensis and Cyperus vaginatus. The group also included all the sampled springs and gorges within Karijini and Millstream National Parks. The group had the highest mean permanence score (3.7) of all site groups. This was coupled with the highest mean annual rainfall (318.6 mm/yr). The soils of the sites contained the highest percentage gravel (all fractions) and were otherwise typically sandy. Exchangeable calcium was the highest of all groups (6.2 me%) and is likely to reflect the contribution of calcium-rich groundwater to the riparian zone substrate.

Plate 5 Areas of bedrock and calcrete dominate the margins of Palm Spring (site PSW013A).

Melaleuca glomerata, juvenile Livistona alfredii
(Millstream fan-palm) and sedges occur in the shallow soil pockets along the spring-fed creek (M.N. Lyons).

Group 6.2. A subgroup of four species-poor sites (9.8 taxa per site) comprising two river pools and two small springs. Structural dominants included *Acacia ampliceps* and *Cyperus vaginatus*. Sites showed significant cattle disturbance or flood damage, which probably accounted for their low species richness scores. *Stylobasium spathulatum* and the naturalised taxon *Bidens bipinnata* were significant indicator species for the group.

River pools and creeks

Group 7. A group of 21 riverine sites including 15 clear river pools, four ephemeral creeks and two springs. The group shows compositional similarities to subgroup 6.1 yet showed higher mean species richness (26.9 cf. 18.4 taxa per site). The group had a mean permanence score of 3.1 (cf. 3.7 for group 6.1), reflecting the small number of springs and inclusion of ephemeral creeks within the group. Indicator species analysis did not reveal any taxon to be individually significant for the

group. Eucalyptus camaldulensis subsp. refulgens and Cyperus vaginatus are structural dominants. The separation of groups 6.1 and 7 is due largely to the very low frequency of taxa dependent on high/permanent moisture, such as Melaleuca argentea, Schoenoplectus subulatus and Typha domingensis within group 7, and the presence of a group of widespread annual taxa including Eragrostis tenellula, Wahlenbergia tumidifructa, and Centipeda minima that are largely absent from group 6.1. Soil texture attributes of groups 6.1 and 7 were very similar (Table 2).

Group 8. A group of nine sites on permanent and near-permanent higher-order river pools structurally dominated by *Melaleuca argentea*, *Eucalyptus camaldulensis* subsp. *refulgens*, *Cyperus vaginatus* and *Cynodon dactylon*. Average species richness was lower than the other group dominated by river pools (19.9 taxa per site, cf. 26.9 in group 7). Soils within the group were more finely textured than groups 6.1 and 7, with lower gravel fractions (Table 2).

Plate 6 Pool in ephemeral creek (site PSW062A) at the base of the Gregory Range. The riparian zone is dominated by *Eucalyptus victrix* and *Cyperus vaginatus*, with *Schoenoplectus subulatus* in the waterbody (N. Gibson).

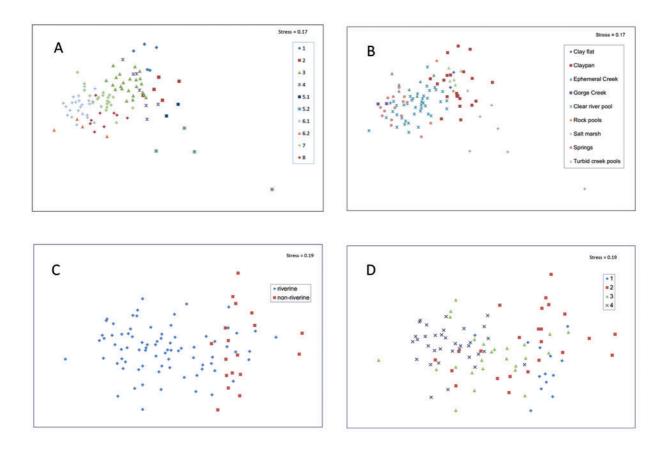


Figure 5 Two dimensional. non-metric multi-dimensional scaling ordination (2D nMDS) of 103 sites based on presence / absence of plant species overlain with (A) floristic groups and (B) a *priori* wetland types. Also, 2D nMDS ordination excluding salt marshes (floristic subgroups 5.1 and 5.2) with sites coded (C) as riverine/non-riverine and (D) according to permanence class (1, ephemeral; 2, seasonal episodic; 3, near permanent; 4, permanent).

Environmental variables and floristic composition

Significant compositional differences were observed for riverine versus non-riverine sites (Figure 5C) (Rho = 0.525), and permanence class (Figure 5D) (Rho = 0.383). Within riverine sites, excluding the very small number of ephemeral sites, permanent sites were compositionally different from seasonal and near-permanent sites (Rho = 0.25), although there was no significant difference between stream orders (Rho = 0.022). Geographic patterns were examined by testing compositional differences against IBRA subregions and major drainage basins. IBRA sub-regions showed only moderate compositional differences (Rho = 0.241), with pairwise differences between both the Fortescue and Roebourne Plain against all other sub-regions accounting for the bulk of the patterning. Little support for compositional differences between drainage basins was observed (Rho = 0.073).

The BEST procedure revealed that a combination of five variables [riverine/non-riverine, DisCoast, clay%, EC (1:5), pH] provided the highest rank correlation with the site dissimilarity matrix (Spearman's rho = 0.53, P < 0.01). The inclusion of the categorical variable riverine/non-riverine confirms the major compositional separation of these two major wetland classes. The soil variables relate to a number of compositional gradients. High clay content corresponds to the separation of clear riverine sites with relatively coarse sediments, from claypans and turbid riverine sites typified by finely textured soils. The latter were compositionally distinct with relatively rich assemblages of annual taxa. The inclusion of soil electrical conductivity and pH also correlates with the compositional separation of riverine and non-riverine sites. The inclusion of DisCoast reflects the greater occurrence of a number of compositionally distinct groups along the subdued landscapes of the coastal plains of the study area, including claypans and turbid creek pools.

DISCUSSION

Flora and diversity

Prior to the current study, the only regional survey of the Pilbara riparian flora was undertaken by Masini (1998) and Masini and Walker (1989) as two separate studies sampling subsections of the region. Although interrupted by cyclonic activity and subsequent sampling late in the dry season, the authors recorded ca. 300 taxa. Many localised surveys assessing impacts of proposed mining developments have also been completed (e.g. Biota Environmental Sciences, 2012). Other studies have been undertaken to assess the impacts on Pilbara wetlands of water abstraction and mine dewatering and its disposal (e.g. Johnson and Wright, 2001; Braimbridge et al. 2010). The only other regionalscale wetland floristic survey undertaken in Western Australia's arid zone was completed by Gibson et al. (2000), in the southern half of the Carnarvon Basin bioregion to the south of the Pilbara. They recorded 263 taxa from 57 wetlands (albeit with smaller quadrat size) representing ca.12% of the region's flora (Keighery et al. 2000).

Gibson et al. (2000) observed that the wetland flora of the southern Carnarvon Basin, while dominated by taxa of the arid zone (Eremaean), had affinities with both temperate and tropical floras. In part, this is true of the Pilbara, although the temperate component of the flora is smaller and largely composed of very widespread taxa rather than those with temperate distributions for which the Pilbara is their northern range limit. The Pilbara riparian flora also includes a larger component of the tropical flora, from both the rocky landscapes of the northern Kimberley and the more topographically subdued central Kimberley, Ord-Victoria Plain and Victoria-Bonaparte bioregions. A subset of these does not occur elsewhere in the Eremaean areas of Western Australia (e.g. Atalaya hemiglauca). Notable elements of the tropical riparian flora are also near their southern limit in the Pilbara (e.g. Melaleuca argentea and Sesbania formosa).

While sharing broadly similar climates (Leighton, 2004; Wyrwoll *et al.* 2000), the strong affinities of the Pilbara flora with the adjoining Carnarvon and Gascoyne bioregions are also attributable to the regions possessing a similar suite of wetland types. All share a combination of riverine and non-riverine water bodies that represent similar hydrological settings. Indeed some of the major structural dominants in riverine riparian zones are common to the three regions (e.g. *Eucalyptus camaldulensis* subsp. *refulgens* and *Acacia coriacea* subsp. *pendens*). In contrast, the sandy deserts to the east and northeast of the Pilbara are characterised by internal

drainage with few major riverine habitats. Where these occur they are commonly broad, sometimes saline, drainage lines flowing into basins, or highly ephemeral creek systems arising in isolated ranges. The saline coastal areas of the Pilbara and the Fortescue Marsh share taxa with these desert systems (e.g. *Tecticornia auriculata*). The deserts, like the Pilbara, contain a suite of claypans and clay flats that are episodically inundated and elements of their flora are shared.

The proportion of uncommon taxa recorded for the Pilbara - singletons (33.2%) and those from fewer than five sites (66.4%) – is of similar magnitude to other similar studies. Gibson et al. (2000) recorded that 55% of taxa occurred at a single site (singletons) in the southern Carnarvon Basin. A more comprehensive survey of temperate zone wetlands in Western Australia showed very similar proportions (31% and 59.3% respectively) to the current study (Lyons et al. 2004). The occurrence of this uncommon component of the flora (at similar levels) is also a consistent feature of quadrat-based floristic surveys carried out across the wider Western Australian landscape (Gibson et al. 2004; Keighery et al. 2000; Lyons et al. 2014), and poses problems for designing reserve systems that aim to capture major floristic communities.

Species richness of sites was related to both the a priori wetland types and the site groups derived from the classification based on floristic composition. Maximum richness occurred in less permanent wetlands, with concomitant higher richness in non-riverine sites. A similar pattern was observed for the proportion of uncommon taxa across the range of wetland types. Coarsely textured soils that limit moisture retention, as well as major disturbance associated with the high energy/ volume flows following flood events, are likely to limit the suite of taxa that can persist along many riverine riparian zones in the Pilbara. The plant communities of these larger riverine sites are often simple, with groundwater-dependent overstorey trees (Melaleuca argentea, Eucalyptus camaldulensis subsp. refulgens) (O'Grady 2006) and simple understoreys of shrubs, rhizomatous grasses and sedges that are more resistant to flood waters (e.g. Melaleuca linophylla, Cyperus vaginatus). In contrast, more ephemeral sites, those with lower flow-energy (e.g. turbid linear creeks), as well as claypans, clay flats and rock pools, experience much-reduced flood disturbance and their soils are more finely textured. In many of these shallow wetlands, the wet/dry ecotone is broad, providing habitats for a larger range of taxa with differing responses to wetting and drying (Brock and Casanova 1997). The development of species-rich seed banks that persist

for long periods between fill events has also been shown to contribute to the richness of these sites (Brock *et al.* 2006).

The extensive aquifer systems of the Pilbara (Waters and Rivers Commission 1996) discharge groundwater to form permanently flowing creeks, typically in rocky sites, or contribute flows to permanent pools within river channels. Springs form a group that is relatively poor in species (18.3 taxa per site) in the Pilbara, and are characterised by taxa requiring permanently damp or wet soil that physically dominated sites, e.g. Cyperus vaginatus, Melaleuca argentea, Typha domingensis. Studies of springs elsewhere in Australia confirm that springs of the Pilbara are floristically distinct from the remainder of the continent. In the Kimberley and tropical Northern Territory, rainforest floristic elements are a major component of spring floras (Kenneally et al. 1991; Russell-Smith 1991). Detailed studies of the springs of the Great Artesian Basin (Fensham and Fairfax 2003; Fensham and Price 2004), while very different floristically from the Pilbara, highlight the importance of springs in the conservation of endemic and relictual taxa. In the Pilbara, springs and spring-fed river pools and associated gorge habitats provide important mesic refugia for taxa such as Livistona alfredii, Stylidium weeliwolli and Fimbristylis sieberiana, including major distributional outliers such as Cladium procerum, Phragmites karka, Imperata cylindrica and Adiantum capillus-veneris. In arid Central Australia, permanent water bodies, including springs and seepages, have also been shown to be important refugia for relict and endemic species (White et al. 2000; Brim Box et al. 2008).

Floristic composition

Patterns in the floristic composition of Pilbara wetlands and rivers correspond to major hydrological and substrate attributes of the sites. These environmental differences are largely embodied by the initial *a priori* site groups that influenced the sampling design and are reflected in the site groups I derived.

The vegetation of the Fortescue Marsh is compositionally distinct from the remainder of the site groups, even though sampling of the Marsh was limited relative to its complexity and size. While I did not sample tidal environments along the Pilbara coast that are likely to share some taxa with the Marsh (e.g. *Tecticornia indica*) it contains a floristically unique element of the Pilbara wetland flora.

Among the remaining rivers and wetlands a major compositional separation is seen between riverine and non-riverine (wetland) sites. Turbid creek pools, while riverine, show clear floristic

similarities to claypans. Turbid sites are a feature of creeks and smaller rivers in Pilbara lowlands. Like claypans, they have fine soils, have generally short hydroperiods and are not subject to major flood flows. This is reflected in the analysis with soil texture emerging as a significant term in the BEST analysis. Masini (1988) also highlighted the importance of sediment texture and water permanence in structuring Pilbara wetland plant communities, finding strong correspondence between morphological/hydrological (subjective) and floristic (objective) classification of sites. Importantly, both the current study and that of Masini (1988) are very site-specific. Dryland rivers show considerable heterogeneity in terms of channel morphology and sediment attributes along their length, particularly where over-bank flows fill secondary channels (Thoms et al. 2006). As a consequence, even a small stretch of river (< 5 km) may capture a number of floristic elements.

Biogeographic patterns in the riparian flora across the Pilbara are explained by gross differences in the distribution of major wetland types across its four IBRA subregions. This is not surprising, given that, relative to the broader landscape, riparian zones are somewhat buffered from the dominant climatic gradient that occurs from west to east in the region, particularly in terms of moisture availability (Leighton, 2004). In particular, at the regional scale, spring sites are largely decoupled from the prevailing climate. The topographically subdued, largely depositional landscapes of the Fortescue and Roebourne Plains IBRA sub-regions show significant differences from the remaining sub-regions.

Conclusions

The Pilbara riparian flora represents 25% of the Pilbara flora, and is dominated by Eremaean and tropical taxa, with strongest affinities to adjoining externally draining bioregions.

Biogeographic patterning is limited, with sub-regional differences being related to the relative proportion of wetland types within each subregion. Riverine sites, in particular, show limited compositional difference across the region. The Fortescue valley, coastal plains and other lowland areas make important contributions to the diversity of non-riverine wetlands. Claypans and clay flats capture a large component of the Pilbara wetland flora, and their scattered occurrence across the lowlands of the region poses difficulties in capturing their diversity in the reserve system. Within the region, the Fortescue Marsh, along with spring sites in Karijini and Millstream National Parks, support unique elements of the Pilbara riparian flora.

ACKNOWLEDGEMENTS

I thank David Mickle for his unwavering assistance and companionship in the field and office. Field work was assisted by Neil Gibson, Natalia Huang and Simon Lyons. Adrian Pinder led the site selection with valuable initial input from Peter Kendrick and Stephen van Leeuwen. Pilbara DEC staff provided welcome accommodation and delivered much-needed parts for broken field equipment. Numerous pastoralists and indigenous communities provided local knowledge, hospitality and access to their lands. Adrian Pinder drafted Figure 1. Steve Dillon provided his Pilbara species list and Ben Richardson provided data on the species IBRA occurrences. Lesley Gibson assisted with indicator species analysis. Norm McKenzie along with two anonymous referees provided valuable comments on the draft manuscript.

REFERENCES

- Anderson, M.J., Gorley, R.N. and Clarke, K.R. (2008). Plymouth: Primer-E; 2008. *PERMANOVA+ for PRIMER: Guide to software and statistical methods*.
- Beard, J.S. (1990). *Plant life of Western Australia*. Kangaroo Press: Kenthurst, Australia.
- Belbin, L. (1980). TWOSTEP: A program incorporating asymmetric comparisons that uses two steps to produce a dissimilarity matrix. Technical Memorandum 80/9, CSIRO Division of Land Use Research: Canberra, Australia
- Belbin, L. (1995). *PATN technical reference*. CSIRO Division of Wildlife and Ecology: Canberra, Australia.
- Biota Environmental Sciences (2012). A vegetation and flora survey of the Koodaideri study area. Unpublished report prepared for Rio Tinto: Perth, Australia. (online: http://www.epa.wa.gov.au/EIA/referralofPropschemes/Lists/Proposal/Attachments/178/Appendix%204_A%20Vegetation%20and%20 Flora%20Survey.pdf)
- Braimbridge, M., Antao, M. and Loomes, R. (2010). Groundwater dependent ecosystems for Millstream: ecological values and issues, Environmental water report series, Report no. 13, Department of Water, Government of Western Australia.
- Brim Box, J., Duguid, A., Read, R.E., Kimber, R.G., Knapton, A., Davis, J. and Bowland, A.E. (2008). Central Australian waterbodies: The importance of permanence in a desert landscape. *Journal of Arid Environments* 72: 1395–1413.
- Brock, M., Capon S.J. and Porter, J.L. (2006). Disturbance of plant communities of desert rivers (pp 100–132). *In*: Kingsford, R. (ed.), *Ecology of desert rivers*. Cambridge University Press: Cambridge, UK.
- Brock, M. and Casanova, M.T. (1997). Plant life at the edge of wetlands: ecological responses to wetting and drying (pp. 181–192). *In*: Klomp, N. and Lunt, I. (eds), *Frontiers in ecology: Building the links*. Elsevier Science: Oxford, UK.
- Clarke, K.R. and Green, R.H. (1988). Statistical design and analysis for a 'biological effects' study. *Marine Ecology Progress Series* **92**: 205–219.

- Colwell, R.K. (2009). *EstimateS: Statistical estimation of species richness and shared species from samples.* Version 8.2. User's Guide and application, published at http://purl.oclc.org/estimates
- De Caceres, M. and Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. *Ecology* **90**: 3566–3574.
- Fensham, R.J. and Fairfax, R.J. (2003). Spring wetlands of the Great Artesian Basin, Queensland, Australia. *Wetlands Ecology and Management* 11: 343–362.
- Fensham, R.J., Fairfax, R.J. and Sharpe, P.R. (2004). Spring wetlands in seasonally arid Queensland, environmental relations, classification and conservation values. *Australian Journal of Botany* **52**: 583–595.
- Geological Survey of Western Australia (1990). *Geology* and mineral resources of Western Australia. Memoir 3. Western Australian Geological Survey: Perth, Australia.
- Gibson, N.G., Keighery, G.J. and Lyons, M.N. (2000). The flora and vegetation of the seasonal and perennial wetlands of the southern Carnarvon Basin, Western Australia. Records of the Western Australian Museum, Supplement 61: 175–216.
- Gibson, N., Keighery, G.J., Lyons, M.N. and Webb, A. (2004). Terrestrial flora and vegetation of the Western Australian wheatbelt. *Records of the Western Australian Museum, Supplement* **67**: 139–189.
- Houlder, D.J., Hutchinson, M.F., Nix, H.A. and McMahon, J.P. (2000). *ANUCLIM User Guide, Version 5.1*. Centre for Resource and Environmental Studies, Australian National University: Canberra, Australia.
- Johnson, S.L. and Wright, A.H. (2001). *Central Pilbara groundwater study. Hydrological Record Series*, Report HG 8. Waters and Rivers Commission: Perth, Australia.
- Keighery, G.J. (2010). The naturalised vascular plants of the Pilbara region, Western Australia. *Records of the Western Australian Museum, Supplement* **78**: 299–311.
- Keighery, G.J., Gibson, N., Lyons M.N. and Burbidge, A.H. (2000). Flora and vegetation of the southern Carnarvon Basin. *Records of the Western Australian Museum, Supplement* **61**: 77–154.
- Kenneally, K.F., Keighery, G.J. and Hyland, B.P.M. (1991). Floristics and phytogeography of Kimberley rainforests (pp 91–131). *In*: McKenzie, N.L., Johnston, R.B. and Kendrick, P.G. (eds), *Kimberley rainforests of Australia*. Surrey Beatty and Sons: Chipping-Norton, Australia.
- Leighton, K.A. (2004). Climate (pp 19–38). *In:* van Vreeswyk, A.M.E., Payne, A.L., Leighton, K.A. and Hennig, P. (eds) (2004). *An inventory and condition survey of the Pilbara region, Western Australia.* Technical Bulletin No. 92. Western Australian Department of Agriculture: Perth, Australia.
- Lyons, M.N., Gibson, N., Keighery, G.J. and Lyons, S.D. (2004). Wetland flora and vegetation of the Western Australian wheatbelt. *Records of the Western Australian Museum, Supplement* **67**: 39–89.
- Lyons, M.N., Keighery, G.J., Gibson, L.A. and Handasyde, T. (2014). Flora and vegetation communities of selected islands off the Kimberley coast of Western Australia. *Records of the Western Australian Museum, Supplement* 81: 205–243.
- McKenzie, N.L., van Leeuwen, S. and Pinder, A.M. (2009). Introduction to the Pilbara Biodiversity Survey,

- 2002–2007. Records of the Western Australian Museum, Supplement 78: 3–89.
- Masini, R.J. (1988). *Inland waters of the Pilbara Western Australia* (Part 1), *A report of a field study carried out in March–April 1983*. Technical Series 10, Environmental Protection Authority Perth, Western Australia.
- Masini, R.J. and Walker, B.A. (1989). *Inland waters of the Pilbara Western Australia* (Part 2), *A report of a field study carried out in October–November 1984*. Technical Series 24, Environmental Protection Authority: Perth, Western Australia.
- Meissner, R., Owen, G. and Bayliss, B. (2009). Flora and vegetation of the banded iron formation of the Yilgarn Craton: Robinson Range and Mount Gould. *Conservation Science Western Australia* 7: 363–376.
- Mueller, F. (1881a). *Plants of north-western Australia*. Votes and Proceedings of the Legislative Council during the first session of 1881, no. 1. Government Printer: Perth, Australia.
- Mueller, F. (1881b). A catalogue of plants collected during Mr. Alexander Forrest's geographical exploration of North-west Australia in 1879. *Journal and Proceedings of the Royal Society of New South Wales* **14**: 81–95.
- Pinder, A.M., Halse, S.A., Shiel, R.J. and McRae, J.M. (2010). An arid zone awash with diversity: patterns in the distribution of aquatic invertebrates in the Pilbara region of Western Australia. *Records of the Western Australian Museum*, Supplement 78: 205–246.
- R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria.
- Russell-Smith, J. (1991). Classification, species richness, and environmental relations of monsoon rainforest in northern Australia. *Journal of Vegetation Science* 2: 259–278.
- Smith, M.G. (2013). *Threatened and priority flora list for Western Australia*. Department of Parks and Wildlife: Kensington, Western Australia.
- Sneath, P.H.A. and Sokal, R.R. (1973). Numerical taxonomy: the principles and practice of numerical classification.

- Freeman: San Francisco, USA.
- Strahler, A.N. (1952). Hypsometric (area-altitude) analysis of erosional topography. *Bulletin of the Geological Society of America* **63**: 1117–1142.
- Thackway, R. and Cresswell, I.D. (1995). *An interim biogeographic regionalisation of Australia*. Australian Nature Conservation Agency: Canberra, Australia.
- Thoms, M.C., Beyer, P.J. and Rogers, K.H. (2006). Variability, complexity, and diversity: the geomorphology of river ecosystems in dryland regions (pp 47–75). *In*: Kingsford, R.T. (ed), *Ecology of desert rivers*. Cambridge University Press: Cambridge, UK.
- van Vreeswyk, A.M.E., Payne, A.L., Leighton, K.A. and Hennig, P. (eds) (2004). *An inventory and condition survey of the Pilbara region, Western Australia*. Technical Bulletin No. 92. Western Australian Department of Agriculture: Perth, Australia.
- Walshe, T.V., Halse, S.A., McKenzie N.L. and Gibson, N. (2004). Towards identification of an efficient set of natural diversity recovery catchments in the Western Australian Wheatbelt. Records of the Western Australian Museum, Supplement 67: 365–384.
- Waters and Rivers Commission (1996). *Pilbara region water* resources: review and development plan, summary report 4. Western Australian Waters and Rivers Commission: Perth, Australia.
- White, M., Albrecht, A., Duguid, A., Latz, A., Hamilton, M., Latz, P. and White, M. (2000). Plant species and sites of botanical significance in the southern bioregions of the Northern Territory; vol. 1: Significant vascular plants. Report to the Australian Heritage Commission from the Arid Lands Environment Centre, and the Parks and Wildlife Commission of the Northern Territory: Alice Springs, Australia.
- Wyrwoll, K.-H., Courtney, J. and Sandercock, P. (2000). The climatic environment of the Carnarvon Basin, Western Australia. *Records of the Western Australian Museum, Supplement* **61**: 13–27.

APPENDIX 1 [ELECTRONIC]

Site by species data matrix, reordered according to their site and species classifications. The floristic groups are indicated. Taxa recorded from one site are excluded (see Electronic Appendix 3).

APPENDIX 2 [ELECTRONIC]

List of taxa recorded from 103 sites sampled during the survey (superscript ¹ denotes pairs of infraspecific taxa analysed at specific rank, superscript ² denotes closely related taxa that could not be reliably discriminated and were amalgamated for analysis). Numbers following taxa are Department of Parks and Wildlife priority flora codes (see Smith 2013).

APPENDIX 3 [ELECTRONIC]

Site by singletons species data matrix.

See CD inside the back cover or visit

http://www.museum.wa.gov.au/research/records-supplements/