A new troglomorphic species of *Austrochthonius* (Pseudoscorpiones: Chthoniidae) from Australia, with remarks on *Chthonius caecus*

Mark S. Harvey¹ and Lee G. Mould²

¹Department of Terrestrial Invertebrates, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.
E-mail: mark.harvey@museum.wa.gov.au

²Biota Environmental Sciences Pty Ltd, PO Box 176, North Perth, Western Australia 6906, Australia.
E-mail: lee@biota.net.au

Abstract – A new species of the chthoniid genus *Austrochthonius* Chamberlin is described and named from the Ludlow region of southern Western Australia. *Austrochthonius strigosus* sp. nov. exhibits some strong troglomorphic adaptations such as eye loss, elongate pedipalps and pallid colouration. *Chthonius caecus* Tullgren, 1909, a junior homonym, and its replacement name *Sathrochthonius tullgreni* Chamberlin, 1962, are transferred to *Austrochthonius*. A new replacement name, *Austrochthonius muchmorei*, is provided, as *A. tullgreni* is a junior secondary homonym of *A. tullgreni* (Beier, 1931).

INTRODUCTION

The chthoniid genus *Austrochthonius* possesses a typical Gondwanan distribution with eight species recorded from southern South America, three species from New Zealand, three species from Australia, one species from the Iles Crozet, and one species from South Africa (Harvey 1991a, 1991c; Judson 2001). The Australian fauna consist of *Austrochthonius australis* Hoff from southern Australia and two troglobitic species from caves in the Naracoorte region, South Australia (*A. cavicola* Beier) and Cape Range peninsula, Western Australia (*A. easti* Harvey). Kennedy (1990) presented a redescription of *A. australis* based upon large quantities of material from south-eastern Australia and noted that the Western Australian specimens attributed to *A. australis* by Beier (1966a) were sufficiently different from *A. australis* that they represented a distinct species. An additional species from the Kimberley region of Western Australia was reported by Harvey (1991b) but it currently remains undescribed.

Epigean members of *Austrochthonius* in Australia can be quite common in leaf litter and soil, but the troglobitic species are relatively uncommon with just a few specimens collected. Whilst considerable work is needed to unravel the systematic relationships of the genus within Australia, we are here describing a new troglomorphic species of the genus that has been recovered from subterranean sampling undertaken in the Ludlow area near Busselton, south-western Australia. Although only a single male has been collected, it is sufficiently distinct from all other species of the genus that we have prepared a systematic description to formally record this unusual species in the scientific literature. We also comment on the species first named as *Chthonius caecus* Tullgren from south-western Australia (Tullgren 1909) which has since been transferred to the genus *Sathrochthonius* Chamberlin and renamed *S. tullgreni* (Chamberlin, 1962). We suggest that this species is in fact a species of the genus *Austrochthonius*.

MATERIAL AND METHODS

The material utilized in the present study is lodged in the Western Australian Museum, Perth (WAM). Terminology and mensuration mostly follows Chamberlin (1931), with the exception of the nomenclature of the pedipalps, legs, and with some minor modifications to the terminology of the trichobothria (Harvey 1992). In particular, it should be noted that the terminology for the trichobothria used by Harvey (1992) differs slightly from that used by other workers.

The specimen was examined by preparing a temporary slide mounts by immersing the specimen in 75% lactic acid at room temperature for several days, and mounting it on a microscope slide with 10 mm coverslips supported by small sections of 0.25 mm or 0.50 mm diameter nylon fishing line. It was examined with an Olympus BH-2 compound microscope and illustrated with the aid of a drawing tube. Measurements were taken at the highest possible magnification using an ocular...
graticule. After study the specimen was returned to 75% ethanol with the dissected portions placed in 12 x 3 mm glass genitalia microvials (BioQuip Products, Inc.).

SYSTEMATICS

Family Chthoniidae Daday
Subfamily Chthoniinae Daday

Genus *Austrochthonius* Chamberlin

Austrochthonius Chamberlin, 1929: 68. Type species: *Chthonius chilensis* Chamberlin, 1923, by original designation.

Remarks

Austrochthonius belongs to a group of genera characterised by the presence of coxal spines only on coxa II and that lack one or more enlarged spine-like setae on the interno-basal margin of the chelal hand. Defined in this way, this group currently includes nine genera: *Austrochthonius*, *Chilochthonius* Vitali-di Castri, *Drepanochthonius* Beier, *Francochthonius* Vitali-di Castri, *Maorichthonius* Chamberlin, *Malcolmchthonius* Benedict, *Mexichthonius* Muchmore, *Mundochthonius* Chamberlin and *Tyrrannochthoniella* Beier. The African genus *Congochthonius* Beier was also attributed by Muchmore (2001) to a group containing some of these genera but the affinities of this unusual genus appear to lie with *Sathrochthonius* Chamberlin and *Sathrochthoniella* Beier due to a small suite of morphological features of which the most prominent is the sub-basal position of trichobothria *ib* and *isb*.

Six genera of the *Austrochthonius* group occur in the southern hemisphere, whereas three genera occur in the northern hemisphere. *Austrochthonius* species are found on all of the southern continents (Harvey 1996), as well as the Îles Crozet (Vitali-di Castri 1968); species of *Chilochthonius*, *Drepanochthonius* and *Francochthonius* are restricted to Chile (Beier 1964a; Vitali-di Castri 1976); and the genera *Maorichthonius* and *Tyrrannochthoniella* are endemic to New Zealand (Beier 1976). The three Laurasian genera, *Mundochnthonius*, *Malcolmchthonius* and *Mexichthonius*, occur in North America, whilst species of *Mundochnthonius* have also been recorded from Europe and East Asia (summarized by Harvey 1991a), with subsequent species recently named by Kim and Hong (1994), Muchmore (1996), Sakayori (2002), Dashadamirov (2005) and Zaragoza and Harvey (2006). The relationships and status of some of these genera is doubtful and some rationalisation may be expected in the future.

Austrochthonius strigosus sp. nov.

Figures 1–5

Material Examined

Holotype

♂, Ludlow region (site LDDB2, 33.58921503°S, 115.4904651°E), 33°35'21"5, 115°29'26"E, Western Australia, Australia, 18 November 2004, from borehole at approximately 5 m depth, L. Mould and D. Kamien (WAM T65550).

Diagnosis

Austrochthonius strigosus differs from all previously named species of the genus by the elongate pedipalpal chela which is 6.35 times longer than broad in the holotype male, but less than 5.4 times longer than broad in other species (Table 1).

Description

Adult male (holotype, WAM T65550): Colour generally pale yellow-brown, legs slightly paler than body.

Chelicera: with 5 setae on hand and 1 medial seta on movable finger (Figure 3); fixed finger with 5 small teeth, of approximately same size; movable finger slightly shorter than hand, with 4 small teeth and 2 extremely small teeth; blades of the flagellum not clearly visible; galea a short rounded nubbin.

Pedipalp: trochanter 1.73, femur 4.95, patella 1.89, chela 6.35, chelal hand 2.17 times longer than broad; movable chelal finger 1.90 times longer than hand; fixed chelal finger with 69 teeth, moveable chelal finger with 55 teeth, all teeth closely spaced and either gently rounded or slightly truncate (Figure 1); fixed chelal finger and hand with 8 trichobothria, movable chelal finger with 4 trichobothria (Figures 1, 2); *ib* and *isb* situated sub-medially on dorsum of chelal hand; *eb* and *esb* situated sub-laterally at base of chelal fingers; *xs* situated slightly distal to *et* near tip of fixed finger, each hair shorter than those of other trichobothria; *b* situated slightly closer to *t* than to *sb*; *sb* closer to *b* than to *st*; venom apparatus absent.

Carapace: 1.05 times longer than broad; without eyes; anterior margin finely denticate with very distinct and strongly toothed epistome (Figure 5); with 18 setae arranged 6: 4: 4: 2: 2: the pre-ocular seta about 50% length of other setae in anterior row;
New trogloomorphic species of *Austrochthonius*

Table 1 Species of *Austrochthonius*, with distributions and pedipalpal chela ratios.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
<th>Ratio of pedipalpal chela length/width</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. argentinae Beier</td>
<td>South America</td>
<td>4.81 (female)</td>
<td>(Hoff, 1950)</td>
</tr>
<tr>
<td>A. australis Hoff</td>
<td>Australia</td>
<td>4.07 (female)</td>
<td>(Hoff, 1951)</td>
</tr>
<tr>
<td>A. bolivianus Beier</td>
<td>South America</td>
<td>4.1 (adult)</td>
<td>(Beier, 1966a)</td>
</tr>
<tr>
<td>A. cavicola Beier</td>
<td>Australia</td>
<td>4.2 (adult)</td>
<td>(Beier, 1932)</td>
</tr>
<tr>
<td>A. chilensis chilensis (Chamberlin)</td>
<td>South America</td>
<td>5.2 (male)</td>
<td>(Beier, 1967a)</td>
</tr>
<tr>
<td>A. chilensis magalhanicus Beier</td>
<td>South America</td>
<td>4.30 (female)</td>
<td>(Chamberlin, 1923)</td>
</tr>
<tr>
<td>A. chilensis transversus Beier</td>
<td>South America</td>
<td>not stated</td>
<td>(Beier, 1964a)</td>
</tr>
<tr>
<td>A. chilensis tran.ferus</td>
<td>South America</td>
<td>5.4 (male)</td>
<td>(Beier, 1964b)</td>
</tr>
<tr>
<td>A. chilensis magalhanicus Beier</td>
<td>South America</td>
<td>4.8 (female)</td>
<td></td>
</tr>
<tr>
<td>A. casti Harvey</td>
<td>Australia</td>
<td>4.17 (male)</td>
<td>(Harvey, 1991c)</td>
</tr>
<tr>
<td>A. iguazuensis Vitali-di Castri</td>
<td>South America</td>
<td>2.82 (female)</td>
<td>(Vitali-di Castri, 1975)</td>
</tr>
<tr>
<td>A. insularis Vitali-di Castri</td>
<td>Iles Crozet</td>
<td>4.4 (female)</td>
<td>(Vitali-di Castri, 1968)</td>
</tr>
<tr>
<td>A. nordax Beier</td>
<td>New Zealand</td>
<td>5.2 (male)</td>
<td>(Beier, 1967b)</td>
</tr>
<tr>
<td>A. paraguensis Vitali-di Castri</td>
<td>South America</td>
<td>3.54 (male)</td>
<td>(Vitali-di Castri, 1975)</td>
</tr>
<tr>
<td>A. parvus (Mello-Lettão)</td>
<td>South America</td>
<td>5.3 (male)</td>
<td>(Judson, 2001)</td>
</tr>
<tr>
<td>A. persimilis Beier</td>
<td>South America</td>
<td>4.0 (female)</td>
<td>(Beier, 1964a)</td>
</tr>
<tr>
<td>A. rapax Beier</td>
<td>New Zealand</td>
<td>4.2</td>
<td>(Beier, 1976)</td>
</tr>
<tr>
<td>A. semiserratus Beier</td>
<td>South America</td>
<td>4.64 (female)</td>
<td>(calculated from Beier, 1930, fig. 11a)</td>
</tr>
<tr>
<td>A. strigosus sp. nov.</td>
<td>Australia</td>
<td>6.35 (male)</td>
<td>this paper</td>
</tr>
<tr>
<td>A. tullgreni (Beier)</td>
<td>South Africa</td>
<td>4.6 (adult)</td>
<td>(Beier, 1931)</td>
</tr>
<tr>
<td>A. zealandicus zealandicus Beier</td>
<td>New Zealand</td>
<td>4.9-5.2 (male)</td>
<td>(Beier, 1967b)</td>
</tr>
<tr>
<td>A. zealandicus obscurus Beier</td>
<td>New Zealand</td>
<td>4.1-4.4 (female)</td>
<td>(Beier, 1966b)</td>
</tr>
</tbody>
</table>

with 3 pairs of lyrifissures, one pair situated anteromedially, the second pair situated interno-lateral to the "ocular" region, and the third pair situated exterior to the sole pair of setae of the posterior row.

Coxal region: coxal chaetotaxy: 2+3: 3 + 2m: 4: 5: 5 (Figure 4); manducatory process with 2 acuminate distal setae, about equal in length to each other; pedipalpal coxa without dorsal setae; intercoxal tubercle absent; coxa I without apical projection, but with 2 small microsetae (m) situated on distal pedipalpal coxa without dorsal setae; intercoxal claws, claws simple.

Abdomen: tergites and sternites undivided; tergal chaetotaxy, 4: 4: 4: 4: 5: 6: 6: 6: 6: 6: 0; sternal chaetotaxy, 10: (1) 26 (1); (2) 7 [4+4] (2); 9: 8: 8: 8: 8: 8: 8: : 2. All setae bordering sternite III acuminate. Genitalia of male not studied in detail (due to poor preservation), but 4 pairs of stout glandular setae present within genital atrium. Pleural membrane evenly plicate.

Dimensions (mm)

Holotype male (WAM T65550): Body length 1.184. Pedipalps: trochanter 0.176/0.102, femur 0.505/0.102, patella 0.217/0.115, chela 0.768/0.121, hand length 0.262, movable finger length 0.499. Chelicera 0.352/0.169, movable finger length 0.195. Carapace 0.403/0.384. Leg I: femur 0.280/0.054, patella 0.131/0.041, tibia 0.150/0.041, tarsus 0.438/0.147. Leg IV: femur + patella 0.417/0.147, tibia 0.301/0.069, metatarsus 0.146/0.052, tarsus missing.

Remarks

The single specimen was taken from a bore at a depth of approximately 5 m during sampling targeting stygofauna in the region. The pseudoscorpion was collected in a sample raised to the surface using a modified plankton net and collection jar, lowered into a borehole through a 50 mm diameter piezometer (a non-pumping well, generally of small diameter, for measuring the elevation of a water table or for other groundwater monitoring) within limestone sediments in the Ludlow region. Additional wells were sampled in the area by the junior author and, despite several sampling attempts in the region, no further specimens were obtained. Thus, at present, *A. strigosus* is known only from a single karst location situated in south-western Australia. The type locality comprises open woodland composed of Tuart (*Eucalyptus gomphocephala*, Myrtaceae) and Peppermint (*Agonis flexuosa*, Myrtaceae) with an understorey dominated by weeds including Arum Lily (*Zantedeschia aethiopica*, Araceae) and introduced grasses on a floor of dense leaf litter and sandy soil.
Figures 1–4 Austrochthonius strigosus sp. nov., holotype male. 1, left chela, lateral view. 2, right pedipalp, dorsal view. 3, left chelicera, dorsal view. 4, right coxae I and II (abbreviations: ca = coxal spines; m = microsetae). 5, carapace, dorsal view. Scale lines = 0.10 mm (Figure 4), 0.20 mm (Figures 1, 3, 5), 0.50 mm (Figure 2).
New troglomorphic species of Austrochthonius

The holotype is slightly macerated and covered in a fine sediment which is consistent with the specimen spending some time after death in the water within the bore, or at least on the surface of the water column. It is lacking several legs and the distal segments are missing on others.

On the basis of the total lack of eyes (Figure 5) and the strongly elongated pedipalpal segments (Figures 1, 2), A. strigosus is clearly the most troglomorphic species thus far recognized in the genus. The only other cave-dwelling species, A. cavicola from the Naracoorte Caves, South Australia and A. easti from the Cape Range Caves, Western Australia, possess less elongate pedipalpal segments. Although both A. strigosus and A. cavicola completely lack eyes (Beier, 1968), A. easti has a single pair of small anterior eyes (Harvey, 1991c). All epigean species of the genus, with the exception of the blind A. igazaurenisis, either possess two pairs of eyes or a single pair of eyes.

Austrochthonius strigosus satisfies the criteria discussed by Harvey (2002) to be considered as a short-range endemic species. It has an exceedingly small distribution and occurs in such a specialised habitat — karst within the Ludlow region — that the total area of occupancy is likely to be minimal.

Etymology
The specific epithet denotes the slender pedipalpal chela (strigous, Latin, lean, thin).

Austrochthonius muchmorei nom. nov.
Chthonius caecus Tullgren, 1909: 414-415, figure 3 [junior primary homonym of Chthonius caecus Packard, 1884 and Chthonius caecus Simon, 1885].
Mundochthonius (?) caecus (Tullgren): Beier 1932: 38; Roewer 1937: 238.
Mundochthonius caecus (Tullgren): Nicholls 1933: 111; Chamberlin, 1934: 3; Weidner 1959: 115.
Sathroehthonius (?) tullgreni Chamberlin: Beier, 1966a: 276; Muchmore 1982: 158.

Remarks
Tullgren (1909) described Chthonius caecus based upon a single male collected from Brunswick (a small town to the south of Perth that is now called Brunswick Junction, 33°15'S, 115°50'E) during the Michaelsen and Hartmeyer Expedition on 7 October 1905. The specimen was doubtfully transferred to the genus Mundochnhonius by Beier (1932: 38) who reported that the specimen was lost ("Type verloren gegangen"). Weidner (1959) reported that the specimen was lost in July 1930 from the Zoologisches Institut und Zoologisches Museum, Universität Hamburg Germany, which has been recently confirmed for us by Dr Hieronymus Dastych (in litt., 17 May 2006). Chamberlin (1962) speculated on the identity of C. caecus and tentatively transferred it to his newly formed genus Sathroehthonius, also noting that it was a junior primary homonym of both C. caecus Packard, 1884 and C. caecus Simon, 1885 (International Commission on Zoological Nomenclature, 1999, Article 58). To resolve the homonymy, Chamberlin (1962) provided the replacement name S. tullgreni. Beier (1966a) and Muchmore (1982) doubted that Chamberlin’s generic placement of this species was correct, the former by including a question mark after the generic name [Sathroehthonius (?) tullgreni], and the latter by stating that “there is no way to determine the identity of this species until toptotypic material ... is studied.”

The speculation that Tullgren’s specimen was a member of the genus Sathroehthonius is here believed to be erroneous, and we suggest that it is better placed in the genus Austrochthonius. The original description by Tullgren (1909) clearly illustrates a specimen with straight chelal fingers (when viewed dorsally). The chelal fingers of Sathroehthonius species are gently but unquestionably curved (e.g., Chamberlin 1962, fig. 1b; Muchmore 1982, fig. 2), whereas species of Austrochthonius, as well as many other chthonioids, possess straight or nearly straight chelal fingers. Furthermore, whilst members of Austrochthonius are quite common throughout south-western Australia, species of Sathroehthonius are very rare. Indeed, the only records of Sathroehthonius from the region are of an unnamed species from Quininup (34°28'S, 116°15'E) (WAM 80/1373), West Cape Howe (35°08'S, 117°36'E) (WAM 89/363-364) and Warren National Park near Pemberton (34°27'S, 116°02'E) (WAM 80/1151-1153). The only other chthonioids in the region are Lagynoehthonius australicus (Beier) which occurs in high rainfall regions along the south coast of Western Australia, and several species of Pseudotyrannoehthonius which are found in a variety of disjunct locations in the area (Harvey, unpublished data). The description of C. caecus by Tullgren (1909) clearly demonstrates that it does not belong to either of these genera.

Based upon this reasoning, we here transfer Chthonius caecus Tullgren and the replacement name Sathroehthonius tullgreni Chamberlin to Austrochthonius. Unfortunately this species then becomes a junior secondary homonym of Austro-

It is beyond the scope of this paper to provide a complete description of *A. muchmorei* as there is more than one species of *Austrochthonius* occurring in leaf litter and soil within south-western Australia (Harvey, unpublished data) and there are considerable difficulties in determining suitable species level boundaries amongst this assemblage.

Etymology

This species is named for William B. Muchmore, in recognition of his outstanding contribution to pseudoscorpion systematics over a 40-year period. He also suggested that *S. tullgreni* may be misplaced in *Sathrochthonius*.

ACKNOWLEDGEMENTS

We wish to thank Cable Sands (WA) Pty Ltd for access to the study site and Biota Environmental Sciences Pty Ltd for their resources and support. Dr H. Dastych (Zoologisches Museum und Zoologisches Museum, Universität Hamburg) kindly provided information on the holotype of *Chthonius caecus*, and two anonymous referees made valuable comments on a draft of the manuscript.

REFERENCES

International Commission on Zoological Nomenclature
New troglomorphic species of *Austrochthonius*

Guide to Authors

Subject Matter:
Reviews, observations and results of research into all branches of natural science and human studies will be considered for publication. However, emphasis is placed on studies pertaining to Western Australia. Longer papers will be considered for publication as a Supplement to the Records of the Western Australian Museum. Short communications should not normally exceed three typed pages and this category of paper is intended to accommodate observations, results or new records of significance, that otherwise might not get into the literature, or for which there is a particular urgency for publication. All material must be original and not have been published elsewhere.

Presentation:
Authors are advised to follow the layout and style in the most recent issue of the Records of the Western Australian Museum including headings, tables, illustrations and references.

The title should be concise, informative and contain key words necessary for retrieval by modern searching techniques. An abridged title (not exceeding 50 letter spaces) should be included for use as a running head.

An abstract must be given in full length papers but not short communications, summarizing the scope of the work and principal findings. It should normally not exceed 2% of the paper and should be suitable for reprinting in reference periodicals.

The International System of units should be used.

Numbers should be spelled out from one to nine in descriptive text; figures used for 10 or more. For associated groups, figures should be used consistently, e.g., 5 to 10, not five to 10.

Spelling should follow the Concise Oxford Dictionary.

Systematic papers must conform with the International Codes of Botanical and Zoological Nomenclature and, as far as possible, with their recommendations.

Synonyms should be given in the short form (taxon, author, date, page) and the full reference cited at the end of the paper. All citations, including those associated with scientific names, must be included in the references.

Manuscripts:
The original and two copies of manuscripts and figures should be submitted to the Editor, c/o Publications Department, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986. They must be in double-spaced typescript on A4 sheets. All margins should be at least 30 mm wide. Tables plus heading and legends to illustrations should be typed on separate pages. The desired position for insertion of tables and illustrations in the text should be indicated in pencil. Tables should be numbered consecutively, have headings which make them understandable without reference to the text, and be referred to in the text.

High quality illustrations are required to size (16.8 cm x 25.2 cm) or no larger than 32 cm x 40 cm with sans serif lettering suitable for reduction to size. Photographs must be good quality black and white prints, not exceeding 16.8 cm x 25.2 cm. Scale must be indicated on illustrations. All maps, line drawings, photographs and graphs, should be numbered in sequence and referred to as Figure/s in the text and captions. Each must have a brief, fully explanatory caption. On acceptance a computer disk containing all corrections should be sent with amended manuscript. The disk should be marked with program (e.g. Word, WordPerfect, etc).

In papers dealing with historical subjects references may be cited as footnotes. In all other papers references must be cited in the text by author and date and all must be listed alphabetically at the end of the paper. The names of journals are to be given in full.

Processing:
Papers and short communications are reviewed by at least two referees and acceptance or rejection is then decided by the editor.

The senior author is sent one set of page proofs which must be returned promptly.

The senior author will receive fifty free offprints of the paper. Additional offprints can be ordered at page proof stage.
CONTENTS

R.E. Johnstone
The birds of Gag Island, Western Papuan islands, Indonesia 115

David L. Morgan and Howard S. Gill
Osteology of the first dorsal fin in two terapontid fishes, *Leiopotherapon unicolor* (Günther, 1859) and *Amniataba caudavittata* (Richardson, 1845), from Western Australia: evidence for hybridisation? 133

Volker W. Framenau
The wolf spider genus *Venatrix* Roewer: new species, synonymies and generic transfers (Araneae, Lycosidae) 145

Mark S. Harvey
New species and records of the pseudoscorpion family Menthidae (Pseudoscorpiones) 167

Brian Morton
The functional morphology of *Penicillus philippinensis* (Anomalodesmata: Clavagelloidea: Penicillidae) and the evolution of an unique muscular system in the Bivalvia 175

Gregory D. Edgecombe
A troglobitic cryptopid centipede (Chilopoda: Scolopendromorpha) from western Queensland 193

Mark S. Harvey, Frantisek Štáhlavský and Pieter D. Theron
The distribution of *Eukoenenia mirabilis* (Palpigradi: Eukoeneniidae): a widespread tramp 199

Mark S. Harvey and Lee G. Mould
A new troglomorphic species of *Austrochthonius* (Pseudoscorpiones: Chthoniidae) from Australia, with remarks on *Chthonius caecus* 205